BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 23254653)

  • 1. To scavenge or not to scavenge, that is STILL the question.
    Allan EG; Kander MC; Carmichael I; Garman EF
    J Synchrotron Radiat; 2013 Jan; 20(Pt 1):23-36. PubMed ID: 23254653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Can radiation damage to protein crystals be reduced using small-molecule compounds?
    Kmetko J; Warkentin M; Englich U; Thorne RE
    Acta Crystallogr D Biol Crystallogr; 2011 Oct; 67(Pt 10):881-93. PubMed ID: 21931220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Room-temperature scavengers for macromolecular crystallography: increased lifetimes and modified dose dependence of the intensity decay.
    Barker AI; Southworth-Davies RJ; Paithankar KS; Carmichael I; Garman EF
    J Synchrotron Radiat; 2009 Mar; 16(Pt 2):205-16. PubMed ID: 19240332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational variation of proteins at room temperature is not dominated by radiation damage.
    Russi S; González A; Kenner LR; Keedy DA; Fraser JS; van den Bedem H
    J Synchrotron Radiat; 2017 Jan; 24(Pt 1):73-82. PubMed ID: 28009548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation damage of protein crystals at cryogenic temperatures between 40 K and 150 K.
    Teng TY; Moffat K
    J Synchrotron Radiat; 2002 Jul; 9(Pt 4):198-201. PubMed ID: 12091725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A SAXS-based approach to rationally evaluate radical scavengers - toward eliminating radiation damage in solution and crystallographic studies.
    Stachowski TR; Snell ME; Snell EH
    J Synchrotron Radiat; 2021 Sep; 28(Pt 5):1309-1320. PubMed ID: 34475280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to avoid premature decay of your macromolecular crystal: a quick soak for long life.
    Kauffmann B; Weiss MS; Lamzin VS; Schmidt A
    Structure; 2006 Jul; 14(7):1099-105. PubMed ID: 16843891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation Damage in Macromolecular Crystallography.
    Garman EF; Weik M
    Methods Mol Biol; 2017; 1607():467-489. PubMed ID: 28573586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray inactivation of lysozyme in dilute solution.
    Gorin G; Papapavlou L; Tai LW
    Int J Radiat Biol Relat Stud Phys Chem Med; 1969 Feb; 15(1):33-41. PubMed ID: 5305156
    [No Abstract]   [Full Text] [Related]  

  • 11. To scavenge or not to scavenge: that is the question.
    Nowak E; Brzuszkiewicz A; Dauter M; Dauter Z; Rosenbaum G
    Acta Crystallogr D Biol Crystallogr; 2009 Sep; 65(Pt 9):1004-6. PubMed ID: 19690379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of possible free-radical scavengers and metrics for radiation damage in protein cryocrystallography.
    Murray J; Garman E
    J Synchrotron Radiat; 2002 Nov; 9(Pt 6):347-54. PubMed ID: 12409621
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific chemical and structural damage to proteins produced by synchrotron radiation.
    Weik M; Ravelli RB; Kryger G; McSweeney S; Raves ML; Harel M; Gros P; Silman I; Kroon J; Sussman JL
    Proc Natl Acad Sci U S A; 2000 Jan; 97(2):623-8. PubMed ID: 10639129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduction of X-ray-induced radiation damage of macromolecular crystals by data collection at 15 K: a systematic study.
    Meents A; Wagner A; Schneider R; Pradervand C; Pohl E; Schulze-Briese C
    Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):302-9. PubMed ID: 17327667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation damage and dose limits in serial synchrotron crystallography at cryo- and room temperatures.
    de la Mora E; Coquelle N; Bury CS; Rosenthal M; Holton JM; Carmichael I; Garman EF; Burghammer M; Colletier JP; Weik M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(8):4142-4151. PubMed ID: 32047034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying X-ray radiation damage in protein crystals at cryogenic temperatures.
    Kmetko J; Husseini NS; Naides M; Kalinin Y; Thorne RE
    Acta Crystallogr D Biol Crystallogr; 2006 Sep; 62(Pt 9):1030-8. PubMed ID: 16929104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room-temperature serial crystallography at synchrotron X-ray sources using slowly flowing free-standing high-viscosity microstreams.
    Botha S; Nass K; Barends TR; Kabsch W; Latz B; Dworkowski F; Foucar L; Panepucci E; Wang M; Shoeman RL; Schlichting I; Doak RB
    Acta Crystallogr D Biol Crystallogr; 2015 Feb; 71(Pt 2):387-97. PubMed ID: 25664750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation damage in protein crystals examined under various conditions by different methods.
    Garman EF; Nave C
    J Synchrotron Radiat; 2009 Mar; 16(Pt 2):129-32. PubMed ID: 19240324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contaminant inclusion into protein crystals analyzed by electrospray mass spectrometry and X-ray crystallography.
    Hirschler J; Halgand F; Forest E; Fontecilla-Camps JC
    Protein Sci; 1998 Jan; 7(1):185-92. PubMed ID: 9514273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.