These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 23254684)

  • 1. Construction of oxygen and chemical concentration gradients in a single microfluidic device for studying tumor cell-drug interactions in a dynamic hypoxia microenvironment.
    Wang L; Liu W; Wang Y; Wang JC; Tu Q; Liu R; Wang J
    Lab Chip; 2013 Feb; 13(4):695-705. PubMed ID: 23254684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies.
    Chang CW; Cheng YJ; Tu M; Chen YH; Peng CC; Liao WH; Tung YC
    Lab Chip; 2014 Oct; 14(19):3762-72. PubMed ID: 25096368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions.
    Chen YA; King AD; Shih HC; Peng CC; Wu CY; Liao WH; Tung YC
    Lab Chip; 2011 Nov; 11(21):3626-33. PubMed ID: 21915399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of hypoxia-induced myocardial injury dynamics in a tissue interface mimicking microfluidic device.
    Ren L; Liu W; Wang Y; Wang JC; Tu Q; Xu J; Liu R; Shen SF; Wang J
    Anal Chem; 2013 Jan; 85(1):235-44. PubMed ID: 23205467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Assay of Oxygen-Dependent Cytotoxicity and Genotoxicity of Anticancer Drugs on an Integrated Microchip.
    Li L; Li Y; Shao Z; Luo G; Ding M; Liang Q
    Anal Chem; 2018 Oct; 90(20):11899-11907. PubMed ID: 30168712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ measurement of cellular microenvironments in a microfluidic device.
    Lin Z; Cherng-Wen T; Roy P; Trau D
    Lab Chip; 2009 Jan; 9(2):257-62. PubMed ID: 19107282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A microfluidic device with passive air-bubble valves for real-time measurement of dose-dependent drug cytotoxicity through impedance sensing.
    Xu Y; Lv Y; Wang L; Xing W; Cheng J
    Biosens Bioelectron; 2012 Feb; 32(1):300-4. PubMed ID: 22208957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic cell culture array with various oxygen tensions.
    Peng CC; Liao WH; Chen YH; Wu CY; Tung YC
    Lab Chip; 2013 Aug; 13(16):3239-45. PubMed ID: 23784347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Device with an Oxygen Gradient Generator for Investigating Effects of Specific Hypoxia Conditions on Responses of Tumor Cells.
    Ding L; Sun D; Wang Z; Gao T; Wei J; Li X; Chen L; Liu B; Li J; Liu C
    Langmuir; 2024 Sep; 40(37):19316-19323. PubMed ID: 39217623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic oxygen sink to create a targeted cellular hypoxic microenvironment under ambient atmospheric conditions.
    Barmaki S; Jokinen V; Obermaier D; Blokhina D; Korhonen M; Ras RHA; Vuola J; Franssila S; Kankuri E
    Acta Biomater; 2018 Jun; 73():167-179. PubMed ID: 29649636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of dynamic temporal and spatial concentration gradients using microfluidic devices.
    Lin F; Saadi W; Rhee SW; Wang SJ; Mittal S; Jeon NL
    Lab Chip; 2004 Jun; 4(3):164-7. PubMed ID: 15159771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients.
    Chiang HJ; Yeh SL; Peng CC; Liao WH; Tung YC
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parallel microfluidic networks for studying cellular response to chemical modulation.
    Liu D; Wang L; Zhong R; Li B; Ye N; Liu X; Lin B
    J Biotechnol; 2007 Sep; 131(3):286-92. PubMed ID: 17706314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic Biopsy Trapping Device for the Real-Time Monitoring of Tumor Microenvironment.
    Holton AB; Sinatra FL; Kreahling J; Conway AJ; Landis DA; Altiok S
    PLoS One; 2017; 12(1):e0169797. PubMed ID: 28085924
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen control with microfluidics.
    Brennan MD; Rexius-Hall ML; Elgass LJ; Eddington DT
    Lab Chip; 2014 Nov; 14(22):4305-18. PubMed ID: 25251498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of linear and non-linear concentration gradients along microfluidic channel by microtunnel controlled stepwise addition of sample solution.
    Li CW; Chen R; Yang M
    Lab Chip; 2007 Oct; 7(10):1371-3. PubMed ID: 17896024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic device with chemical gradient for single-cell cytotoxicity assays.
    Hosokawa M; Hayashi T; Mori T; Yoshino T; Nakasono S; Matsunaga T
    Anal Chem; 2011 May; 83(10):3648-54. PubMed ID: 21526753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic trapping and high-throughput patterning of cells using pneumatic microstructures in an integrated microfluidic device.
    Liu W; Li L; Wang JC; Tu Q; Ren L; Wang Y; Wang J
    Lab Chip; 2012 May; 12(9):1702-9. PubMed ID: 22430256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture.
    Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S
    Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-gradient constructions in a flow-rate insensitive microfluidic system for drug screening towards personalized treatment.
    Shen S; Zhang X; Zhang F; Wang D; Long D; Niu Y
    Talanta; 2020 Feb; 208():120477. PubMed ID: 31816765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.