These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 23254684)

  • 41. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A multiplexed microfluidic system for evaluation of dynamics of immune-tumor interactions.
    Moore N; Doty D; Zielstorff M; Kariv I; Moy LY; Gimbel A; Chevillet JR; Lowry N; Santos J; Mott V; Kratchman L; Lau T; Addona G; Chen H; Borenstein JT
    Lab Chip; 2018 Jun; 18(13):1844-1858. PubMed ID: 29796561
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A parallel-gradient microfluidic chamber for quantitative analysis of breast cancer cell chemotaxis.
    Saadi W; Wang SJ; Lin F; Jeon NL
    Biomed Microdevices; 2006 Jun; 8(2):109-18. PubMed ID: 16688570
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A simple and versatile microfluidic cell density gradient generator for quantum dot cytotoxicity assay.
    Wu J; Chen Q; Liu W; Lin JM
    Lab Chip; 2013 May; 13(10):1948-54. PubMed ID: 23538998
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Evaluation of the potential of Raman microspectroscopy for prediction of chemotherapeutic response to cisplatin in lung adenocarcinoma.
    Nawaz H; Bonnier F; Knief P; Howe O; Lyng FM; Meade AD; Byrne HJ
    Analyst; 2010 Dec; 135(12):3070-6. PubMed ID: 20931112
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A microfluidic multi-injector for gradient generation.
    Chung BG; Lin F; Jeon NL
    Lab Chip; 2006 Jun; 6(6):764-8. PubMed ID: 16738728
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simultaneous generation of chemical concentration and mechanical shear stress gradients using microfluidic osmotic flow comparable to interstitial flow.
    Park JY; Yoo SJ; Hwang CM; Lee SH
    Lab Chip; 2009 Aug; 9(15):2194-202. PubMed ID: 19606296
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ceramide promotes the death of human cervical tumor cells in the absence of biochemical and morphological markers of apoptosis.
    López-Marure R; Gutiérrez G; Mendoza C; Ventura JL; Sánchez L; Reyes Maldonado E; Zentella A; Montaño LF
    Biochem Biophys Res Commun; 2002 May; 293(3):1028-36. PubMed ID: 12051763
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantifying biased response of axon to chemical gradient steepness in a microfluidic device.
    Xiao RR; Wang L; Zhang L; Liu YN; Yu XL; Huang WH
    Anal Chem; 2014 Dec; 86(23):11649-56. PubMed ID: 25381866
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rapid generation of spatially and temporally controllable long-range concentration gradients in a microfluidic device.
    Du Y; Shim J; Vidula M; Hancock MJ; Lo E; Chung BG; Borenstein JT; Khabiry M; Cropek DM; Khademhosseini A
    Lab Chip; 2009 Mar; 9(6):761-7. PubMed ID: 19255657
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis, structure and hypoxic cytotoxicity of 3-amino-1,2,4-benzotriazine-1,4-dioxide derivatives.
    Jiang F; Weng Q; Sheng R; Xia Q; He Q; Yang B; Hu Y
    Arch Pharm (Weinheim); 2007 May; 340(5):258-63. PubMed ID: 17464965
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis, hypoxia-selective cytotoxicity of new 3-amino-1,2,4-benzotriazine-1,4-dioxide derivatives.
    Xia Q; Zhang L; Zhang J; Sheng R; Yang B; He Q; Hu Y
    Eur J Med Chem; 2011 Mar; 46(3):919-26. PubMed ID: 21281992
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Diffusion- and convection-based activation of Wnt/β-catenin signaling in a gradient generating microfluidic chip.
    Kim C; Kreppenhofer K; Kashef J; Gradl D; Herrmann D; Schneider M; Ahrens R; Guber A; Wedlich D
    Lab Chip; 2012 Dec; 12(24):5186-94. PubMed ID: 23108330
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A 3-D microfluidic combinatorial cell array.
    Liu MC; Tai YC
    Biomed Microdevices; 2011 Feb; 13(1):191-201. PubMed ID: 21063783
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tomatidine inhibits invasion of human lung adenocarcinoma cell A549 by reducing matrix metalloproteinases expression.
    Yan KH; Lee LM; Yan SH; Huang HC; Li CC; Lin HT; Chen PS
    Chem Biol Interact; 2013 May; 203(3):580-7. PubMed ID: 23566884
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dose-dependent cell-based assays in V-shaped microfluidic channels.
    Li CW; Yang J; Yang M
    Lab Chip; 2006 Jul; 6(7):921-9. PubMed ID: 16804597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multicompartmented microfluidic device for characterization of dose-dependent cadmium cytotoxicity in BALB/3T3 fibroblast cells.
    Mahto SK; Yoon TH; Shin H; Rhee SW
    Biomed Microdevices; 2009 Apr; 11(2):401-11. PubMed ID: 18982453
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Endogenous markers of tumor hypoxia predictors of clinical radiation resistance?
    Vordermark D; Brown JM
    Strahlenther Onkol; 2003 Dec; 179(12):801-11. PubMed ID: 14652668
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Behavior of breast cancer cells under oxygen concentration gradients in a microfluidic device.
    Aratake S; Kawahara N; Funamoto K
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083361
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of the absorption of methotrexate on cells and its cytotoxicity assay by using an integrated microfluidic device coupled to a mass spectrometer.
    Gao D; Li H; Wang N; Lin JM
    Anal Chem; 2012 Nov; 84(21):9230-7. PubMed ID: 23039268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.