BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 23254814)

  • 1. A patient-specific, interactive, multiuser, online mixed-reality neurosurgical training and planning system.
    Wang J; Zhao Y; Xu X; Wang Q; Li F; Zhang S; Gan Z; Xiong R; Zhang J; Chen X
    Neurosurg Focus; 2024 Jan; 56(1):E15. PubMed ID: 38163359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiologically derived 3D virtual models for neurosurgical planning.
    Cho HJ; Lloyd T; Zammit A; Pattavilakom Sadasivan A; Wagels M; Sutherland A
    J Clin Neurosci; 2024 May; 123():23-29. PubMed ID: 38518385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The "STARS" study: advanced preoperative rehearsal and intraoperative navigation in neurosurgical oncology.
    Perin A; Gambatesa E; Rui CB; Carone G; Fanizzi C; Lombardo FM; Galbiati TF; Sgubin D; Silberberg H; Cappabianca P; Meling TR; DI Meco F;
    J Neurosurg Sci; 2023 Dec; 67(6):671-678. PubMed ID: 35380197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Head model dataset for mixed reality navigation in neurosurgical interventions for intracranial lesions.
    Qi Z; Jin H; Xu X; Wang Q; Gan Z; Xiong R; Zhang S; Liu M; Wang J; Ding X; Chen X; Zhang J; Nimsky C; Bopp MHA
    Sci Data; 2024 May; 11(1):538. PubMed ID: 38796526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Turning the operating room into a mixed-reality environment: a prospective clinical investigation for cerebral aneurysm clipping.
    Gmeiner M; Ring MH; Prückl R; Lambrakis EM; Rauch P; Gollwitzer M; Stefanits H; Stroh N; Sonnberger M; Hauser A; Sardi G; Aichholzer M; Gruber A; Schaffelhofer S
    J Neurosurg; 2024 Jun; ():1-10. PubMed ID: 38848587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of advanced technology for preoperative planning in cranial surgery - A survey by the EANS Young Neurosurgeons Committee.
    Raffa G; Spiriev T; Zoia C; Aldea CC; Bartek J; Bauer M; Ben-Shalom N; Belo D; Drosos E; Freyschlag CF; Kaprovoy S; Lepic M; Lippa L; Rabiei K; Schwake M; Stengel FC; Stienen MN; Gandía-González ML
    Brain Spine; 2023; 3():102665. PubMed ID: 38021023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A data-centric artificial intelligent and extended reality technology in smart healthcare systems.
    Shaikh TA; Dar TR; Sofi S
    Soc Netw Anal Min; 2022; 12(1):122. PubMed ID: 36065420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does stereoscopic imaging improve the memorization of medical imaging by neurosurgeons? Experience of a single institution.
    Schlinkmann N; Khakhar R; Picht T; Piper SK; Fekonja LS; Vajkoczy P; Acker G
    Neurosurg Rev; 2022 Apr; 45(2):1371-1381. PubMed ID: 34550492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraoperative utilization of advanced imaging modalities in a complex kidney stone case: a pilot case study.
    Christiansen AR; Shorti RM; Smith CD; Prows WC; Bishoff JT
    World J Urol; 2018 May; 36(5):733-743. PubMed ID: 29546508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neurosurgical Virtual Reality Simulation for Brain Tumor Using High-definition Computer Graphics: A Review of the Literature.
    Kin T; Nakatomi H; Shono N; Nomura S; Saito T; Oyama H; Saito N
    Neurol Med Chir (Tokyo); 2017 Oct; 57(10):513-520. PubMed ID: 28637947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback.
    Alaraj A; Luciano CJ; Bailey DP; Elsenousi A; Roitberg BZ; Bernardo A; Banerjee PP; Charbel FT
    Neurosurgery; 2015 Mar; 11 Suppl 2(0 2):52-8. PubMed ID: 25599200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image-guided neurosurgery with 3-dimensional multimodal imaging data on a stereoscopic monitor.
    Kockro RA; Reisch R; Serra L; Goh LC; Lee E; Stadie AT
    Neurosurgery; 2013 Jan; 72 Suppl 1():78-88. PubMed ID: 23254816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional neuronavigation combined with intra-operative 3D ultrasound: initial experiences during surgical resections close to eloquent brain areas and future directions in automatic brain shift compensation of preoperative data.
    Rasmussen IA; Lindseth F; Rygh OM; Berntsen EM; Selbekk T; Xu J; Nagelhus Hernes TA; Harg E; Håberg A; Unsgaard G
    Acta Neurochir (Wien); 2007; 149(4):365-78. PubMed ID: 17308976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual 3-dimensional preoperative planning with the dextroscope for excision of a 4th ventricular ependymoma.
    Anil SM; Kato Y; Hayakawa M; Yoshida K; Nagahisha S; Kanno T
    Minim Invasive Neurosurg; 2007 Apr; 50(2):65-70. PubMed ID: 17674290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Intraoperative MRI in brain surgery].
    Kubben PL; van Santbrink H; Spincemaille GH; Vandertop WP
    Ned Tijdschr Geneeskd; 2007 Dec; 151(52):2877-82. PubMed ID: 18257432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in cerebrovascular simulation and neuronavigation for the optimization of intracranial aneurysm clipping.
    Marinho P; Thines L; Verscheure L; Mordon S; Lejeune JP; Vermandel M
    Comput Aided Surg; 2012; 17(2):47-55. PubMed ID: 22348657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mono-stereo-autostereo: the evolution of 3-dimensional neurosurgical planning.
    Stadie AT; Kockro RA
    Neurosurgery; 2013 Jan; 72 Suppl 1():63-77. PubMed ID: 23254814
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.