These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 23254905)
1. Computational study of velocity profile obtained in microfluidic channel bearing a fluidic transistor: toward highly resolved electrophoretic separation. Charhrouchni I; Pallandre A; Le Potier I; Deslouis C; Haghiri-Gosnet AM Electrophoresis; 2013 Mar; 34(5):725-35. PubMed ID: 23254905 [TBL] [Abstract][Full Text] [Related]
2. Optimizing band width and resolution in micro-free flow electrophoresis. Fonslow BR; Bowser MT Anal Chem; 2006 Dec; 78(24):8236-44. PubMed ID: 17165812 [TBL] [Abstract][Full Text] [Related]
3. Electrokinetic flow control in microfluidic chips using a field-effect transistor. Horiuchi K; Dutta P Lab Chip; 2006 Jun; 6(6):714-23. PubMed ID: 16738721 [TBL] [Abstract][Full Text] [Related]
4. Electrokinetic transport in nanochannels. 1. Theory. Pennathur S; Santiago JG Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573 [TBL] [Abstract][Full Text] [Related]
5. Reservoir-based dielectrophoresis for microfluidic particle separation by charge. Patel S; Qian S; Xuan X Electrophoresis; 2013 Apr; 34(7):961-8. PubMed ID: 23161644 [TBL] [Abstract][Full Text] [Related]
6. Separation of proteins using a novel two-depth miniaturized free-flow electrophoresis device with multiple outlet fractionation channels. Becker M; Marggraf U; Janasek D J Chromatogr A; 2009 Nov; 1216(47):8265-9. PubMed ID: 19631324 [TBL] [Abstract][Full Text] [Related]
7. Addressable electric fields for size-fractioned sample extraction in microfluidic devices. Lin R; Burke DT; Burns MA Anal Chem; 2005 Jul; 77(14):4338-47. PubMed ID: 16013844 [TBL] [Abstract][Full Text] [Related]
8. Negative dielectrophoresis-based particle separation by size in a serpentine microchannel. Church C; Zhu J; Xuan X Electrophoresis; 2011 Feb; 32(5):527-31. PubMed ID: 21290386 [TBL] [Abstract][Full Text] [Related]
9. A model for Joule heating-induced dispersion in microchip electrophoresis. Wang Y; Lin Q; Mukherjee T Lab Chip; 2004 Dec; 4(6):625-31. PubMed ID: 15570376 [TBL] [Abstract][Full Text] [Related]
10. Quantification of electrical field-induced flow reversal in a microchannel. Pirat C; Naso A; van der Wouden EJ; Gardeniers JG; Lohse D; van den Berg A Lab Chip; 2008 Jun; 8(6):945-9. PubMed ID: 18497916 [TBL] [Abstract][Full Text] [Related]
11. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels. Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892 [TBL] [Abstract][Full Text] [Related]
12. Electroosmotic flow control in microfluidic chips using a self-assembled monolayer as the insulator of a flow field-effect transistor. Chen LC; Wu CC; Wu RG; Chang HC Langmuir; 2012 Aug; 28(31):11281-5. PubMed ID: 22799621 [TBL] [Abstract][Full Text] [Related]
13. Quantitative microfluidic separation of DNA in self-assembled magnetic matrixes. Minc N; Fütterer C; Dorfman KD; Bancaud A; Gosse C; Goubault C; Viovy JL Anal Chem; 2004 Jul; 76(13):3770-6. PubMed ID: 15228353 [TBL] [Abstract][Full Text] [Related]
14. Effect of wall-molecule interactions on electrokinetic transport of charged molecules in nanofluidic channels during FET flow control. Oh YJ; Garcia AL; Petsev DN; Lopez GP; Brueck SR; Ivory CF; Han SM Lab Chip; 2009 Jun; 9(11):1601-8. PubMed ID: 19458869 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic electrophoresis chip coupled to microdialysis for in vivo monitoring of amino acid neurotransmitters. Sandlin ZD; Shou M; Shackman JG; Kennedy RT Anal Chem; 2005 Dec; 77(23):7702-8. PubMed ID: 16316179 [TBL] [Abstract][Full Text] [Related]
16. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Wu H; Huang B; Zare RN Lab Chip; 2005 Dec; 5(12):1393-8. PubMed ID: 16286971 [TBL] [Abstract][Full Text] [Related]
17. Centrifugal and electric field forces dual-pumping CD-like microfluidic platform for biomedical separation. Wang GJ; Hsu WH; Chang YZ; Yang H Biomed Microdevices; 2004 Mar; 6(1):47-53. PubMed ID: 15307444 [TBL] [Abstract][Full Text] [Related]
18. High performance microfluidic capillary electrophoresis devices. Fu LM; Leong JC; Lin CF; Tai CH; Tsai CH Biomed Microdevices; 2007 Jun; 9(3):405-12. PubMed ID: 17487587 [TBL] [Abstract][Full Text] [Related]