These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 23254929)

  • 1. Towards an exact description of electronic wavefunctions in real solids.
    Booth GH; Grüneis A; Kresse G; Alavi A
    Nature; 2013 Jan; 493(7432):365-70. PubMed ID: 23254929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-neural-network solution of the electronic Schrödinger equation.
    Hermann J; Schätzle Z; Noé F
    Nat Chem; 2020 Oct; 12(10):891-897. PubMed ID: 32968231
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phaseless auxiliary field quantum Monte Carlo with projector-augmented wave method for solids.
    Taheridehkordi A; Schlipf M; Sukurma Z; Humer M; Grüneis A; Kresse G
    J Chem Phys; 2023 Jul; 159(4):. PubMed ID: 37493127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled cluster-inspired geminal wavefunctions.
    Gaikwad PB; Kim TD; Richer M; Lokhande RA; Sánchez-Díaz G; Limacher PA; Ayers PW; Miranda-Quintana RA
    J Chem Phys; 2024 Apr; 160(14):. PubMed ID: 38597308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of the Multicomponent Coupled-Cluster Theory for Investigation of Multiexcitonic Interactions.
    Ellis BH; Aggarwal S; Chakraborty A
    J Chem Theory Comput; 2016 Jan; 12(1):188-200. PubMed ID: 26653409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of single particle orbital sets and configuration selection on multideterminant wavefunctions in quantum Monte Carlo.
    Clay RC; Morales MA
    J Chem Phys; 2015 Jun; 142(23):234103. PubMed ID: 26093546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz.
    Dupuy N; Bouaouli S; Mauri F; Sorella S; Casula M
    J Chem Phys; 2015 Jun; 142(21):214109. PubMed ID: 26049481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic theory molecular dynamics and hot dense matter: theoretical foundations.
    Graziani FR; Bauer JD; Murillo MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033104. PubMed ID: 25314544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polynomial-time-scaling quantum dynamics with time-dependent quantum Monte Carlo.
    Christov IP
    J Phys Chem A; 2009 May; 113(20):6016-21. PubMed ID: 19391581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A combined variational and diagrammatic quantum Monte Carlo approach to the many-electron problem.
    Chen K; Haule K
    Nat Commun; 2019 Aug; 10(1):3725. PubMed ID: 31427574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a systematic improvement of the fixed-node approximation in diffusion Monte Carlo for solids-A case study in diamond.
    Benali A; Gasperich K; Jordan KD; Applencourt T; Luo Y; Bennett MC; Krogel JT; Shulenburger L; Kent PRC; Loos PF; Scemama A; Caffarel M
    J Chem Phys; 2020 Nov; 153(18):184111. PubMed ID: 33187421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inclusion of explicit electron-proton correlation in the nuclear-electronic orbital approach using Gaussian-type geminal functions.
    Chakraborty A; Pak MV; Hammes-Schiffer S
    J Chem Phys; 2008 Jul; 129(1):014101. PubMed ID: 18624464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variational Monte Carlo Calculations of A≤4 Nuclei with an Artificial Neural-Network Correlator Ansatz.
    Adams C; Carleo G; Lovato A; Rocco N
    Phys Rev Lett; 2021 Jul; 127(2):022502. PubMed ID: 34296893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The quantum Monte Carlo method-electron correlation from random numbers (abstract only).
    Needs R
    J Phys Condens Matter; 2008 Feb; 20(6):064204. PubMed ID: 21693866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ab initio quantum chemistry with neural-network wavefunctions.
    Hermann J; Spencer J; Choo K; Mezzacapo A; Foulkes WMC; Pfau D; Carleo G; Noé F
    Nat Rev Chem; 2023 Oct; 7(10):692-709. PubMed ID: 37558761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-energy cross-section calculations of single molecules by electron impact: a classical Monte Carlo transport approach with quantum mechanical description.
    Madsen JR; Akabani G
    Phys Med Biol; 2014 May; 59(9):2285-305. PubMed ID: 24731979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond Time-Dependent Density Functional Theory Using Only Single Excitations: Methods for Computational Studies of Excited States in Complex Systems.
    Herbert JM; Zhang X; Morrison AF; Liu J
    Acc Chem Res; 2016 May; 49(5):931-41. PubMed ID: 27100899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unbiased reduced density matrices and electronic properties from full configuration interaction quantum Monte Carlo.
    Overy C; Booth GH; Blunt NS; Shepherd JJ; Cleland D; Alavi A
    J Chem Phys; 2014 Dec; 141(24):244117. PubMed ID: 25554143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicomponent Unitary Coupled Cluster and Equation-of-Motion for Quantum Computation.
    Pavošević F; Hammes-Schiffer S
    J Chem Theory Comput; 2021 Jun; 17(6):3252-3258. PubMed ID: 33945684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.