BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 23255142)

  • 1. Repeated subrupture overload causes progression of nanoscaled discrete plasticity damage in tendon collagen fibrils.
    Veres SP; Harrison JM; Lee JM
    J Orthop Res; 2013 May; 31(5):731-7. PubMed ID: 23255142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-link stabilization does not affect the response of collagen molecules, fibrils, or tendons to tensile overload.
    Veres SP; Harrison JM; Lee JM
    J Orthop Res; 2013 Dec; 31(12):1907-13. PubMed ID: 24038530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in collagen with aging maintain molecular stability after overload: evidence from an in vitro tendon model.
    Willett TL; Labow RS; Aldous IG; Avery NC; Lee JM
    J Biomech Eng; 2010 Mar; 132(3):031002. PubMed ID: 20459190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
    Herod TW; Chambers NC; Veres SP
    Acta Biomater; 2016 Sep; 42():296-307. PubMed ID: 27321189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanically overloading collagen fibrils uncoils collagen molecules, placing them in a stable, denatured state.
    Veres SP; Harrison JM; Lee JM
    Matrix Biol; 2014 Jan; 33():54-9. PubMed ID: 23880369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural response of tendon to excessive level or duration of tensile load supports that collagen fibrils are mechanically continuous.
    Hijazi KM; Singfield KL; Veres SP
    J Mech Behav Biomed Mater; 2019 Sep; 97():30-40. PubMed ID: 31085458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical overload decreases the thermal stability of collagen in an in vitro tensile overload tendon model.
    Willett TL; Labow RS; Lee JM
    J Orthop Res; 2008 Dec; 26(12):1605-10. PubMed ID: 18524005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tendon response to tensile stress: an ultrastructural investigation of collagen:proteoglycan interactions in stressed tendon.
    Cribb AM; Scott JE
    J Anat; 1995 Oct; 187 ( Pt 2)(Pt 2):423-8. PubMed ID: 7592005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructure of tendon rupture depends on strain rate and tendon type.
    Chambers NC; Herod TW; Veres SP
    J Orthop Res; 2018 Nov; 36(11):2842-2850. PubMed ID: 29901228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization via atomic force microscopy of discrete plasticity in collagen fibrils from mechanically overloaded tendons: Nano-scale structural changes mimic rope failure.
    Baldwin SJ; Kreplak L; Lee JM
    J Mech Behav Biomed Mater; 2016 Jul; 60():356-366. PubMed ID: 26925699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MMP-9 selectively cleaves non-D-banded material on collagen fibrils with discrete plasticity damage in mechanically-overloaded tendon.
    Baldwin SJ; Kreplak L; Lee JM
    J Mech Behav Biomed Mater; 2019 Jul; 95():67-75. PubMed ID: 30954916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advanced glycation end-product cross-linking inhibits biomechanical plasticity and characteristic failure morphology of native tendon.
    Lee JM; Veres SP
    J Appl Physiol (1985); 2019 Apr; 126(4):832-841. PubMed ID: 30653412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrophage-like U937 cells recognize collagen fibrils with strain-induced discrete plasticity damage.
    Veres SP; Brennan-Pierce EP; Lee JM
    J Biomed Mater Res A; 2015 Jan; 103(1):397-408. PubMed ID: 24616426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical response of individual collagen fibrils in loaded tendon as measured by atomic force microscopy.
    Rigozzi S; Stemmer A; Müller R; Snedeker JG
    J Struct Biol; 2011 Oct; 176(1):9-15. PubMed ID: 21771659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Equivalent stiffness after glycosaminoglycan depletion in tendon--an ultra-structural finite element model and corresponding experiments.
    Fessel G; Snedeker JG
    J Theor Biol; 2011 Jan; 268(1):77-83. PubMed ID: 20950629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collagen fibril diameter distribution does not reflect changes in the mechanical properties of in vitro stress-deprived tendons.
    Lavagnino M; Arnoczky SP; Frank K; Tian T
    J Biomech; 2005 Jan; 38(1):69-75. PubMed ID: 15519341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collagen fibrils from both positional and energy-storing tendons exhibit increased amounts of denatured collagen when stretched beyond the yield point.
    Lin AH; Slater CA; Martinez CJ; Eppell SJ; Yu SM; Weiss JA
    Acta Biomater; 2023 Jan; 155():461-470. PubMed ID: 36400348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative phase measurements of tendon collagen fibres.
    Maciel D; Veres SP; Kreuzer HJ; Kreplak L
    J Biophotonics; 2017 Jan; 10(1):111-117. PubMed ID: 26824333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon.
    Provenzano PP; Vanderby R
    Matrix Biol; 2006 Mar; 25(2):71-84. PubMed ID: 16271455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.