These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23255254)

  • 21. Nonleaching antibacterial glass surfaces via "Grafting Onto": the effect of the number of quaternary ammonium groups on biocidal activity.
    Huang J; Koepsel RR; Murata H; Wu W; Lee SB; Kowalewski T; Russell AJ; Matyjaszewski K
    Langmuir; 2008 Jun; 24(13):6785-95. PubMed ID: 18517227
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cationic spacer arm design strategy for control of antimicrobial activity and conformation of amphiphilic methacrylate random copolymers.
    Palermo EF; Vemparala S; Kuroda K
    Biomacromolecules; 2012 May; 13(5):1632-41. PubMed ID: 22475325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amphiphilic polymethacrylate derivatives as antimicrobial agents.
    Kuroda K; DeGrado WF
    J Am Chem Soc; 2005 Mar; 127(12):4128-9. PubMed ID: 15783168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Antimicrobial poly(methacrylamide) derivatives prepared via aqueous RAFT polymerization exhibit biocidal efficiency dependent upon cation structure.
    Paslay LC; Abel BA; Brown TD; Koul V; Choudhary V; McCormick CL; Morgan SE
    Biomacromolecules; 2012 Aug; 13(8):2472-82. PubMed ID: 22738241
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane affinity and antibacterial properties of cationic polyelectrolytes with different hydrophobicity.
    Kiss E; Heine ET; Hill K; He YC; Keusgen N; Pénzes CB; Schnöller D; Gyulai G; Mendrek A; Keul H; Moeller M
    Macromol Biosci; 2012 Sep; 12(9):1181-9. PubMed ID: 22833349
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Relative Arrangement of Cationic and Lipophilic Moieties on Hemolytic and Antibacterial Activities of PEGylated Polyacrylates.
    Punia A; Lee K; He E; Mukherjee S; Mancuso A; Banerjee P; Yang NL
    Int J Mol Sci; 2015 Oct; 16(10):23867-80. PubMed ID: 26473831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antibacterial activity of compounds from Rubus pinfaensis.
    Richards RM; Durham DG; Liu X
    Planta Med; 1994 Oct; 60(5):471-3. PubMed ID: 7997480
    [No Abstract]   [Full Text] [Related]  

  • 28. Synthesis and antibacterial activity of carvacryl ethers.
    Patil JU; Suryawanshi KC; Patil PB; Chaudhary SR; Pawar NS
    J Asian Nat Prod Res; 2010 Feb; 12(2):129-33. PubMed ID: 20390755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis and antibacterial activity of substituted flavones, 4-thioflavones and 4-iminoflavones.
    Ullah Mughal E; Ayaz M; Hussain Z; Hasan A; Sadiq A; Riaz M; Malik A; Hussain S; Choudhary MI
    Bioorg Med Chem; 2006 Jul; 14(14):4704-11. PubMed ID: 16603364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intrinsically antibacterial materials based on polymeric derivatives of eugenol for biomedical applications.
    Rojo L; Barcenilla JM; Vázquez B; González R; San Román J
    Biomacromolecules; 2008 Sep; 9(9):2530-5. PubMed ID: 18702543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antibacterial activity of conjugated polyelectrolytes with variable chain lengths.
    Ji E; Parthasarathy A; Corbitt TS; Schanze KS; Whitten DG
    Langmuir; 2011 Sep; 27(17):10763-9. PubMed ID: 21739989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antibacterial polypropylene via surface-initiated atom transfer radical polymerization.
    Huang J; Murata H; Koepsel RR; Russell AJ; Matyjaszewski K
    Biomacromolecules; 2007 May; 8(5):1396-9. PubMed ID: 17417906
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of urea oligomers and their antibacterial activity.
    Tang H; Doerksen RJ; Tew GN
    Chem Commun (Camb); 2005 Mar; (12):1537-9. PubMed ID: 15770251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and biological evaluation of novel luteolin derivatives as antibacterial agents.
    Lv PC; Li HQ; Xue JY; Shi L; Zhu HL
    Eur J Med Chem; 2009 Feb; 44(2):908-14. PubMed ID: 18313801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Block versus random amphiphilic copolymers as antibacterial agents.
    Oda Y; Kanaoka S; Sato T; Aoshima S; Kuroda K
    Biomacromolecules; 2011 Oct; 12(10):3581-91. PubMed ID: 21846110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the binding site of curcumin in Escherichia coli and Bacillus subtilis FtsZ--a structural insight to unveil antibacterial activity of curcumin.
    Kaur S; Modi NH; Panda D; Roy N
    Eur J Med Chem; 2010 Sep; 45(9):4209-14. PubMed ID: 20615583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis, antibacterial activities and molecular docking studies of Schiff bases derived from N-(2/4-benzaldehyde-amino) phenyl-N'-phenyl-thiourea.
    Zhang HJ; Qin X; Liu K; Zhu DD; Wang XM; Zhu HL
    Bioorg Med Chem; 2011 Sep; 19(18):5708-15. PubMed ID: 21872479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Analysis of relation between structure and antibiotic activity of Batumin].
    Kiprianova EA; Klochko VV
    Mikrobiol Z; 2009; 71(1):28-33. PubMed ID: 19663324
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast disinfecting antimicrobial surfaces.
    Madkour AE; Dabkowski JM; Nusslein K; Tew GN
    Langmuir; 2009 Jan; 25(2):1060-7. PubMed ID: 19177651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phantom ring-closing condensation polymerization: towards antibacterial oligoguanidines.
    Mattheis C; Schwarzer MC; Frenking G; Agarwal S
    Macromol Rapid Commun; 2011 Jul; 32(13):994-9. PubMed ID: 21574200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.