These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 23255303)

  • 1. A comprehensive environmental assessment approach to engineered nanomaterials.
    Davis JM
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2013; 5(2):139-49. PubMed ID: 23255303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transparent stakeholder engagement in practice: Lessons learned from applying comprehensive environmental assessment to research planning for nanomaterials.
    Powers C; Hendren C; Wang A; Davis JM
    Integr Environ Assess Manag; 2014 Oct; 10(4):498-510. PubMed ID: 24729532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials.
    Sadik OA; Zhou AL; Kikandi S; Du N; Wang Q; Varner K
    J Environ Monit; 2009 Oct; 11(10):1782-800. PubMed ID: 19809701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A web-based tool to engage stakeholders in informing research planning for future decisions on emerging materials.
    Powers CM; Grieger KD; Hendren CO; Meacham CA; Gurevich G; Lassiter MG; Money ES; Lloyd JM; Beaulieu SM
    Sci Total Environ; 2014 Feb; 470-471():660-8. PubMed ID: 24176714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment.
    Meesters JA; Veltman K; Hendriks AJ; van de Meent D
    Integr Environ Assess Manag; 2013 Jul; 9(3):e15-26. PubMed ID: 23633247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive environmental assessment: a meta-assessment approach.
    Powers CM; Dana G; Gillespie P; Gwinn MR; Hendren CO; Long TC; Wang A; Davis JM
    Environ Sci Technol; 2012 Sep; 46(17):9202-8. PubMed ID: 22889372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The release of engineered nanomaterials to the environment.
    Gottschalk F; Nowack B
    J Environ Monit; 2011 May; 13(5):1145-55. PubMed ID: 21387066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current limitations and challenges in nanowaste detection, characterisation and monitoring.
    Part F; Zecha G; Causon T; Sinner EK; Huber-Humer M
    Waste Manag; 2015 Sep; 43():407-20. PubMed ID: 26117420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico analysis of nanomaterials hazard and risk.
    Cohen Y; Rallo R; Liu R; Liu HH
    Acc Chem Res; 2013 Mar; 46(3):802-12. PubMed ID: 23138971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City.
    Musee N
    Hum Exp Toxicol; 2011 Sep; 30(9):1181-95. PubMed ID: 21148195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conceptual modeling for identification of worst case conditions in environmental risk assessment of nanomaterials using nZVI and C60 as case studies.
    Grieger KD; Hansen SF; Sørensen PB; Baun A
    Sci Total Environ; 2011 Sep; 409(19):4109-24. PubMed ID: 21737121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk management frameworks for human health and environmental risks.
    Jardine C; Hrudey S; Shortreed J; Craig L; Krewski D; Furgal C; McColl S
    J Toxicol Environ Health B Crit Rev; 2003; 6(6):569-720. PubMed ID: 14698953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies.
    von der Kammer F; Ferguson PL; Holden PA; Masion A; Rogers KR; Klaine SJ; Koelmans AA; Horne N; Unrine JM
    Environ Toxicol Chem; 2012 Jan; 31(1):32-49. PubMed ID: 22021021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Risks, Release and Concentrations of Engineered Nanomaterial in the Environment.
    Giese B; Klaessig F; Park B; Kaegi R; Steinfeldt M; Wigger H; von Gleich A; Gottschalk F
    Sci Rep; 2018 Jan; 8(1):1565. PubMed ID: 29371617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guidance for the prognostic risk assessment of nanomaterials in aquatic ecosystems.
    Koelmans AA; Diepens NJ; Velzeboer I; Besseling E; Quik JT; van de Meent D
    Sci Total Environ; 2015 Dec; 535():141-9. PubMed ID: 25684040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What do the data show? Knowledge map development for comprehensive environmental assessment.
    Painter K; McConnell ER; Sahasrabudhe S; Burgoon L; Powers CM
    Integr Environ Assess Manag; 2014 Jan; 10(1):37-47. PubMed ID: 24327299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic approach to evaluating trade-offs among fuel options: the lessons of MTBE.
    Davis JM; Thomas VM
    Ann N Y Acad Sci; 2006 Sep; 1076():498-515. PubMed ID: 17119228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters.
    Suhendra E; Chang CH; Hou WC; Hsieh YC
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Searching for global descriptors of engineered nanomaterial fate and transport in the environment.
    Westerhoff P; Nowack B
    Acc Chem Res; 2013 Mar; 46(3):844-53. PubMed ID: 22950943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis.
    Gottschalk F; Sonderer T; Scholz RW; Nowack B
    Environ Toxicol Chem; 2010 May; 29(5):1036-48. PubMed ID: 20821538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.