These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
378 related articles for article (PubMed ID: 23255472)
1. Novel XPG (ERCC5) mutations affect DNA repair and cell survival after ultraviolet but not oxidative stress. Soltys DT; Rocha CR; Lerner LK; de Souza TA; Munford V; Cabral F; Nardo T; Stefanini M; Sarasin A; Cabral-Neto JB; Menck CF Hum Mutat; 2013 Mar; 34(3):481-9. PubMed ID: 23255472 [TBL] [Abstract][Full Text] [Related]
2. Characterization of three XPG-defective patients identifies three missense mutations that impair repair and transcription. Schäfer A; Schubert S; Gratchev A; Seebode C; Apel A; Laspe P; Hofmann L; Ohlenbusch A; Mori T; Kobayashi N; Schürer A; Schön MP; Emmert S J Invest Dermatol; 2013 Jul; 133(7):1841-9. PubMed ID: 23370536 [TBL] [Abstract][Full Text] [Related]
3. Definition of a short region of XPG necessary for TFIIH interaction and stable recruitment to sites of UV damage. Thorel F; Constantinou A; Dunand-Sauthier I; Nouspikel T; Lalle P; Raams A; Jaspers NG; Vermeulen W; Shivji MK; Wood RD; Clarkson SG Mol Cell Biol; 2004 Dec; 24(24):10670-80. PubMed ID: 15572672 [TBL] [Abstract][Full Text] [Related]
4. Complementation of transformed fibroblasts from patients with combined xeroderma pigmentosum-Cockayne syndrome. Ellison AR; Nouspikel T; Jaspers NG; Clarkson SG; Gruenert DC Exp Cell Res; 1998 Aug; 243(1):22-8. PubMed ID: 9716445 [TBL] [Abstract][Full Text] [Related]
5. Severe growth retardation and short life span of double-mutant mice lacking Xpa and exon 15 of Xpg. Shiomi N; Mori M; Kito S; Harada YN; Tanaka K; Shiomi T DNA Repair (Amst); 2005 Mar; 4(3):351-7. PubMed ID: 15661658 [TBL] [Abstract][Full Text] [Related]
6. Suppression of UV-induced apoptosis by the human DNA repair protein XPG. Clément V; Dunand-Sauthier I; Clarkson SG Cell Death Differ; 2006 Mar; 13(3):478-88. PubMed ID: 16167068 [TBL] [Abstract][Full Text] [Related]
7. Human XPG nuclease structure, assembly, and activities with insights for neurodegeneration and cancer from pathogenic mutations. Tsutakawa SE; Sarker AH; Ng C; Arvai AS; Shin DS; Shih B; Jiang S; Thwin AC; Tsai MS; Willcox A; Her MZ; Trego KS; Raetz AG; Rosenberg D; Bacolla A; Hammel M; Griffith JD; Cooper PK; Tainer JA Proc Natl Acad Sci U S A; 2020 Jun; 117(25):14127-14138. PubMed ID: 32522879 [TBL] [Abstract][Full Text] [Related]
8. A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Nouspikel T; Lalle P; Leadon SA; Cooper PK; Clarkson SG Proc Natl Acad Sci U S A; 1997 Apr; 94(7):3116-21. PubMed ID: 9096355 [TBL] [Abstract][Full Text] [Related]
9. Roles of XPG and XPF/ERCC1 endonucleases in UV-induced immunostaining of PCNA in fibroblasts. Miura M; Nakamura S; Sasaki T; Takasaki Y; Shiomi T; Yamaizumi M Exp Cell Res; 1996 Jul; 226(1):126-32. PubMed ID: 8660947 [TBL] [Abstract][Full Text] [Related]
10. Restoring DNA repair capacity of cells from three distinct diseases by XPD gene-recombinant adenovirus. Armelini MG; Muotri AR; Marchetto MC; de Lima-Bessa KM; Sarasin A; Menck CF Cancer Gene Ther; 2005 Apr; 12(4):389-96. PubMed ID: 15650764 [TBL] [Abstract][Full Text] [Related]
11. Xeroderma pigmentosum and molecular cloning of DNA repair genes. Boulikas T Anticancer Res; 1996; 16(2):693-708. PubMed ID: 8687116 [TBL] [Abstract][Full Text] [Related]
12. Regulation of Transcription Elongation by the XPG-TFIIH Complex Is Implicated in Cockayne Syndrome. Narita T; Narita K; Takedachi A; Saijo M; Tanaka K Mol Cell Biol; 2015 Sep; 35(18):3178-88. PubMed ID: 26149386 [TBL] [Abstract][Full Text] [Related]
13. Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G. Cooper PK; Nouspikel T; Clarkson SG; Leadon SA Science; 1997 Feb; 275(5302):990-3. PubMed ID: 9020084 [TBL] [Abstract][Full Text] [Related]
14. The cancer-free phenotype in trichothiodystrophy is unrelated to its repair defect. Berneburg M; Clingen PH; Harcourt SA; Lowe JE; Taylor EM; Green MH; Krutmann J; Arlett CF; Lehmann AR Cancer Res; 2000 Jan; 60(2):431-8. PubMed ID: 10667598 [TBL] [Abstract][Full Text] [Related]
15. Phenotypic heterogeneity in the XPB DNA helicase gene (ERCC3): xeroderma pigmentosum without and with Cockayne syndrome. Oh KS; Khan SG; Jaspers NG; Raams A; Ueda T; Lehmann A; Friedmann PS; Emmert S; Gratchev A; Lachlan K; Lucassan A; Baker CC; Kraemer KH Hum Mutat; 2006 Nov; 27(11):1092-103. PubMed ID: 16947863 [TBL] [Abstract][Full Text] [Related]
16. Lack of CAK complex accumulation at DNA damage sites in XP-B and XP-B/CS fibroblasts reveals differential regulation of CAK anchoring to core TFIIH by XPB and XPD helicases during nucleotide excision repair. Zhu Q; Wani G; Sharma N; Wani A DNA Repair (Amst); 2012 Dec; 11(12):942-50. PubMed ID: 23083890 [TBL] [Abstract][Full Text] [Related]
17. Functional and molecular genetic analyses of nine newly identified XPD-deficient patients reveal a novel mutation resulting in TTD as well as in XP/CS complex phenotypes. Schäfer A; Gratchev A; Seebode C; Hofmann L; Schubert S; Laspe P; Apel A; Ohlenbusch A; Tzvetkov M; Weishaupt C; Oji V; Schön MP; Emmert S Exp Dermatol; 2013 Jul; 22(7):486-9. PubMed ID: 23800062 [TBL] [Abstract][Full Text] [Related]
18. UV damage causes uncontrolled DNA breakage in cells from patients with combined features of XP-D and Cockayne syndrome. Berneburg M; Lowe JE; Nardo T; Araújo S; Fousteri MI; Green MH; Krutmann J; Wood RD; Stefanini M; Lehmann AR EMBO J; 2000 Mar; 19(5):1157-66. PubMed ID: 10698956 [TBL] [Abstract][Full Text] [Related]