These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 23255529)

  • 1. Physicochemical and biological properties of biomimetic mineralo-protein nanoparticles formed spontaneously in biological fluids.
    Peng HH; Wu CY; Young D; Martel J; Young A; Ojcius DM; Lee YH; Young JD
    Small; 2013 Jul; 9(13):2297-307. PubMed ID: 23255529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle conversion to biofilms: in vitro demonstration using serum-derived mineralo-organic nanoparticles.
    Wong TY; Peng HH; Wu CY; Martel J; Ojcius DM; Hsu FY; Young JD
    Nanomedicine (Lond); 2015; 10(24):3519-35. PubMed ID: 26429230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids.
    Wu CY; Young L; Young D; Martel J; Young JD
    PLoS One; 2013; 8(9):e75501. PubMed ID: 24086546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A story told by a single nanoparticle in the body fluid: demonstration of dissolution-reprecipitation of nanocrystals in a biological system.
    Wu CY; Young D; Martel J; Young JD
    Nanomedicine (Lond); 2015; 10(17):2659-76. PubMed ID: 26014914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Of nanobacteria, nanoparticles, biofilms and their role in health and disease: facts, fancy and future.
    Martel J; Peng HH; Young D; Wu CY; Young JD
    Nanomedicine (Lond); 2014 Apr; 9(4):483-99. PubMed ID: 24787439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive proteomic analysis of mineral nanoparticles derived from human body fluids and analyzed by liquid chromatography-tandem mass spectrometry.
    Martel J; Young D; Young A; Wu CY; Chen CD; Yu JS; Young JD
    Anal Biochem; 2011 Nov; 418(1):111-25. PubMed ID: 21741946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein-templated biomimetic silica nanoparticles.
    Jackson E; Ferrari M; Cuestas-Ayllon C; Fernández-Pacheco R; Perez-Carvajal J; de la Fuente JM; Grazú V; Betancor L
    Langmuir; 2015 Mar; 31(12):3687-95. PubMed ID: 25741589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serum-derived nanoparticles: de novo generation and growth in vitro, and internalization by mammalian cells in culture.
    Peng HH; Martel J; Lee YH; Ojcius DM; Young JD
    Nanomedicine (Lond); 2011 Jun; 6(4):643-58. PubMed ID: 21506688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane vesicles nucleate mineralo-organic nanoparticles and induce carbonate apatite precipitation in human body fluids.
    Wu CY; Martel J; Cheng WY; He CC; Ojcius DM; Young JD
    J Biol Chem; 2013 Oct; 288(42):30571-30584. PubMed ID: 23990473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells.
    Murali K; Kenesei K; Li Y; Demeter K; Környei Z; Madarász E
    Nanoscale; 2015 Mar; 7(9):4199-210. PubMed ID: 25673096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle size matters in the formation of plasma protein coronas on Fe3O4 nanoparticles.
    Hu Z; Zhang H; Zhang Y; Wu R; Zou H
    Colloids Surf B Biointerfaces; 2014 Sep; 121():354-61. PubMed ID: 24974013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic synthesis and characterisation of protein capped silver nanoparticles.
    Sanghi R; Verma P
    Bioresour Technol; 2009 Jan; 100(1):501-4. PubMed ID: 18625550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation and characteristics of biomimetic mineralo-organic particles in natural surface water.
    Wu CY; Martel J; Wong TY; Young D; Liu CC; Lin CW; Young JD
    Sci Rep; 2016 Jun; 6():28817. PubMed ID: 27350595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species.
    Carlson C; Hussain SM; Schrand AM; Braydich-Stolle LK; Hess KL; Jones RL; Schlager JJ
    J Phys Chem B; 2008 Oct; 112(43):13608-19. PubMed ID: 18831567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of protein corona magnetite nanoparticles derived from bread in vitro digestion on Caco-2 cells morphology and uptake.
    Di Silvio D; Rigby N; Bajka B; Mackie A; Baldelli Bombelli F
    Int J Biochem Cell Biol; 2016 Jun; 75():212-22. PubMed ID: 26520468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells.
    Hsiao IL; Huang YJ
    Sci Total Environ; 2011 Mar; 409(7):1219-28. PubMed ID: 21255821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of gelucire content on stability, macrophage interaction and blood circulation of nanoparticles engineered from nanoemulsions.
    Wehrung D; Geldenhuys WJ; Oyewumi MO
    Colloids Surf B Biointerfaces; 2012 Jun; 94():259-65. PubMed ID: 22386863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cell culture media on the dynamic formation of protein-nanoparticle complexes and influence on the cellular response.
    Maiorano G; Sabella S; Sorce B; Brunetti V; Malvindi MA; Cingolani R; Pompa PP
    ACS Nano; 2010 Dec; 4(12):7481-91. PubMed ID: 21082814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive organic profiling of biological particles derived from blood.
    Wu CY; Martel J; Young JD
    Sci Rep; 2018 Jul; 8(1):11310. PubMed ID: 30054526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.