These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 23255615)
1. EGFR activity is required for renal tubular cell dedifferentiation and proliferation in a murine model of folic acid-induced acute kidney injury. He S; Liu N; Bayliss G; Zhuang S Am J Physiol Renal Physiol; 2013 Feb; 304(4):F356-66. PubMed ID: 23255615 [TBL] [Abstract][Full Text] [Related]
2. Class I HDAC activity is required for renal protection and regeneration after acute kidney injury. Tang J; Yan Y; Zhao TC; Gong R; Bayliss G; Yan H; Zhuang S Am J Physiol Renal Physiol; 2014 Aug; 307(3):F303-16. PubMed ID: 24808536 [TBL] [Abstract][Full Text] [Related]
3. Src family kinases regulate renal epithelial dedifferentiation through activation of EGFR/PI3K signaling. Zhuang S; Duan M; Yan Y J Cell Physiol; 2012 May; 227(5):2138-44. PubMed ID: 21780115 [TBL] [Abstract][Full Text] [Related]
4. EGFR drives the progression of AKI to CKD through HIPK2 overexpression. Xu L; Li X; Zhang F; Wu L; Dong Z; Zhang D Theranostics; 2019; 9(9):2712-2726. PubMed ID: 31131063 [TBL] [Abstract][Full Text] [Related]
5. Pharmacological inhibition of the mixed lineage leukemia 1-menin interaction aggravates acute kidney injury induced by folic acid and ischemia-reperfusion in mice. Hou X; Cui B; Qiu A; Liu N; Zhuang S Am J Physiol Renal Physiol; 2023 Nov; 325(5):F669-F680. PubMed ID: 37733875 [TBL] [Abstract][Full Text] [Related]
6. Deletion of the epidermal growth factor receptor in renal proximal tubule epithelial cells delays recovery from acute kidney injury. Chen J; Chen JK; Harris RC Kidney Int; 2012 Jul; 82(1):45-52. PubMed ID: 22418982 [TBL] [Abstract][Full Text] [Related]
7. Sustained activation of EGFR triggers renal fibrogenesis after acute kidney injury. Tang J; Liu N; Tolbert E; Ponnusamy M; Ma L; Gong R; Bayliss G; Yan H; Zhuang S Am J Pathol; 2013 Jul; 183(1):160-72. PubMed ID: 23684791 [TBL] [Abstract][Full Text] [Related]
8. Activation of MEK/ERK and PI3K/Akt pathways by fibronectin requires integrin alphav-mediated ADAM activity in hepatocellular carcinoma: a novel functional target for gefitinib. Matsuo M; Sakurai H; Ueno Y; Ohtani O; Saiki I Cancer Sci; 2006 Feb; 97(2):155-62. PubMed ID: 16441427 [TBL] [Abstract][Full Text] [Related]
9. Combined epidermal growth factor receptor targeting with the tyrosine kinase inhibitor gefitinib (ZD1839) and the monoclonal antibody cetuximab (IMC-C225): superiority over single-agent receptor targeting. Matar P; Rojo F; Cassia R; Moreno-Bueno G; Di Cosimo S; Tabernero J; Guzmán M; Rodriguez S; Arribas J; Palacios J; Baselga J Clin Cancer Res; 2004 Oct; 10(19):6487-501. PubMed ID: 15475436 [TBL] [Abstract][Full Text] [Related]
10. Resistance to tyrosine kinase inhibition by mutant epidermal growth factor receptor variant III contributes to the neoplastic phenotype of glioblastoma multiforme. Learn CA; Hartzell TL; Wikstrand CJ; Archer GE; Rich JN; Friedman AH; Friedman HS; Bigner DD; Sampson JH Clin Cancer Res; 2004 May; 10(9):3216-24. PubMed ID: 15131063 [TBL] [Abstract][Full Text] [Related]
11. Molecular phenotype predicts sensitivity of squamous cell carcinoma of the head and neck to epidermal growth factor receptor inhibition. Young NR; Liu J; Pierce C; Wei TF; Grushko T; Olopade OI; Liu W; Shen C; Seiwert TY; Cohen EE Mol Oncol; 2013 Jun; 7(3):359-68. PubMed ID: 23200321 [TBL] [Abstract][Full Text] [Related]
12. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. Guix M; Faber AC; Wang SE; Olivares MG; Song Y; Qu S; Rinehart C; Seidel B; Yee D; Arteaga CL; Engelman JA J Clin Invest; 2008 Jul; 118(7):2609-19. PubMed ID: 18568074 [TBL] [Abstract][Full Text] [Related]
13. Exocyst Sec10 protects renal tubule cells from injury by EGFR/MAPK activation and effects on endocytosis. Fogelgren B; Zuo X; Buonato JM; Vasilyev A; Baek JI; Choi SY; Chacon-Heszele MF; Palmyre A; Polgar N; Drummond I; Park KM; Lazzara MJ; Lipschutz JH Am J Physiol Renal Physiol; 2014 Dec; 307(12):F1334-41. PubMed ID: 25298525 [TBL] [Abstract][Full Text] [Related]
14. PUMA mediates EGFR tyrosine kinase inhibitor-induced apoptosis in head and neck cancer cells. Sun Q; Ming L; Thomas SM; Wang Y; Chen ZG; Ferris RL; Grandis JR; Zhang L; Yu J Oncogene; 2009 Jun; 28(24):2348-57. PubMed ID: 19421143 [TBL] [Abstract][Full Text] [Related]
15. Dual blockade of EGFR and c-Met abrogates redundant signaling and proliferation in head and neck carcinoma cells. Xu H; Stabile LP; Gubish CT; Gooding WE; Grandis JR; Siegfried JM Clin Cancer Res; 2011 Jul; 17(13):4425-38. PubMed ID: 21622718 [TBL] [Abstract][Full Text] [Related]
16. DARPP-32 increases interactions between epidermal growth factor receptor and ERBB3 to promote tumor resistance to gefitinib. Zhu S; Belkhiri A; El-Rifai W Gastroenterology; 2011 Nov; 141(5):1738-48.e1-2. PubMed ID: 21741919 [TBL] [Abstract][Full Text] [Related]
17. Dual-agent molecular targeting of the epidermal growth factor receptor (EGFR): combining anti-EGFR antibody with tyrosine kinase inhibitor. Huang S; Armstrong EA; Benavente S; Chinnaiyan P; Harari PM Cancer Res; 2004 Aug; 64(15):5355-62. PubMed ID: 15289342 [TBL] [Abstract][Full Text] [Related]
18. Exosome production and its regulation of EGFR during wound healing in renal tubular cells. Zhou X; Zhang W; Yao Q; Zhang H; Dong G; Zhang M; Liu Y; Chen JK; Dong Z Am J Physiol Renal Physiol; 2017 Jun; 312(6):F963-F970. PubMed ID: 28356285 [TBL] [Abstract][Full Text] [Related]