These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
488 related articles for article (PubMed ID: 2325623)
1. Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Vancanneyt G; Schmidt R; O'Connor-Sanchez A; Willmitzer L; Rocha-Sosa M Mol Gen Genet; 1990 Jan; 220(2):245-50. PubMed ID: 2325623 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Tanaka A; Mita S; Ohta S; Kyozuka J; Shimamoto K; Nakamura K Nucleic Acids Res; 1990 Dec; 18(23):6767-70. PubMed ID: 2263444 [TBL] [Abstract][Full Text] [Related]
3. Expression of intron-containing GUS constructs is reduced due to activation of a cryptic 5' splice site. Ibrahim AF; Watters JA; Clark GP; Thomas CJ; Brown JW; Simpson CG Mol Genet Genomics; 2001 May; 265(3):455-60. PubMed ID: 11405628 [TBL] [Abstract][Full Text] [Related]
4. Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Janssen BJ; Gardner RC Plant Mol Biol; 1990 Jan; 14(1):61-72. PubMed ID: 2101312 [TBL] [Abstract][Full Text] [Related]
5. Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Desfeux C; Clough SJ; Bent AF Plant Physiol; 2000 Jul; 123(3):895-904. PubMed ID: 10889238 [TBL] [Abstract][Full Text] [Related]
6. Translational nonsense codon suppression as indicator for functional pre-tRNA splicing in transformed Arabidopsis hypocotyl-derived calli. Akama K; Beier H Nucleic Acids Res; 2003 Feb; 31(4):1197-207. PubMed ID: 12582239 [TBL] [Abstract][Full Text] [Related]
7. Genetic transformation of peanut (Arachis hypogaea L.) using cotyledonary node as explant and a promoterless gus::nptII fusion gene based vector. Anuradha TS; Jami SK; Datla RS; Kirti PB J Biosci; 2006 Jun; 31(2):235-46. PubMed ID: 16809856 [TBL] [Abstract][Full Text] [Related]
8. Antisense RNA inhibition of beta-glucuronidase gene expression in transgenic tobacco plants. Robert LS; Donaldson PA; Ladaique C; Altosaar I; Arnison PG; Fabijanski SF Plant Mol Biol; 1989 Oct; 13(4):399-409. PubMed ID: 2491663 [TBL] [Abstract][Full Text] [Related]
9. Agrobacterium-mediated transformation of the wetland monocot Typha latifolia L. (Broadleaf cattail). Nandakumar R; Chen L; Rogers SM Plant Cell Rep; 2005 Mar; 23(10-11):744-50. PubMed ID: 15538575 [TBL] [Abstract][Full Text] [Related]
10. High-level expression of a sweet potato sporamin gene promoter: beta-glucuronidase (GUS) fusion gene in the stems of transgenic tobacco plants is conferred by multiple cell type-specific regulatory elements. Ohta S; Hattori T; Morikami A; Nakamura K Mol Gen Genet; 1991 Mar; 225(3):369-78. PubMed ID: 2017135 [TBL] [Abstract][Full Text] [Related]
11. Correct splicing of a group II intron from a chimeric reporter gene transcript in tobacco plastids. Bock R; Maliga P Nucleic Acids Res; 1995 Jul; 23(13):2544-7. PubMed ID: 7630734 [TBL] [Abstract][Full Text] [Related]
12. Auxin regulates the promoter of the root-inducing rolB gene of Agrobacterium rhizogenes in transgenic tobacco. Maurel C; Brevet J; Barbier-Brygoo H; Guern J; Tempé J Mol Gen Genet; 1990 Aug; 223(1):58-64. PubMed ID: 2259343 [TBL] [Abstract][Full Text] [Related]
13. Improved Agrobacterium-mediated co-transformation and selectable marker elimination in transgenic rice by using a high copy number pBin19-derived binary vector. Sripriya R; Sangeetha M; Parameswari C; Veluthambi B; Veluthambi K Plant Sci; 2011 Jun; 180(6):766-74. PubMed ID: 21497712 [TBL] [Abstract][Full Text] [Related]
14. The regulatory functions of the rolB and rolC genes of Agrobacterium rhizogenes are conserved in the homologous genes (Ngrol) of Nicotiana glauca in tobacco genetic tumors. Nagata N; Kosono S; Sekine M; Shinmyo A; Syono K Plant Cell Physiol; 1995 Sep; 36(6):1003-12. PubMed ID: 8528603 [TBL] [Abstract][Full Text] [Related]
15. Transfer of the yeast salt tolerance gene HAL1 to Cucumis melo L. cultivars and in vitro evaluation of salt tolerance. Bordas M; Montesinos C; Dabauza M; Salvador A; Roig LA; Serrano R; Moreno V Transgenic Res; 1997 Jan; 6(1):41-50. PubMed ID: 9032977 [TBL] [Abstract][Full Text] [Related]
16. Expression in transgenic tobacco of the bacterial neomycin phosphotransferase gene modified by intron insertions of various sizes. Paszkowski J; Peterhans A; Bilang R; Filipowicz W Plant Mol Biol; 1992 Aug; 19(5):825-36. PubMed ID: 1322741 [TBL] [Abstract][Full Text] [Related]
17. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Miller M; Tagliani L; Wang N; Berka B; Bidney D; Zhao ZY Transgenic Res; 2002 Aug; 11(4):381-96. PubMed ID: 12212841 [TBL] [Abstract][Full Text] [Related]
18. Induction of a tomato anionic peroxidase gene (tap1) by wounding in transgenic tobacco and activation of tap1/GUS and tap2/GUS chimeric gene fusions in transgenic tobacco by wounding and pathogen attack. Mohan R; Bajar AM; Kolattukudy PE Plant Mol Biol; 1993 Jan; 21(2):341-54. PubMed ID: 7678769 [TBL] [Abstract][Full Text] [Related]
19. Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mysore KS; Bassuner B; Deng XB; Darbinian NS; Motchoulski A; Ream W; Gelvin SB Mol Plant Microbe Interact; 1998 Jul; 11(7):668-83. PubMed ID: 9650299 [TBL] [Abstract][Full Text] [Related]
20. Deletion analysis and localization of SbPRP1, a soybean cell wall protein gene, in roots of transgenic tobacco and cowpea. Suzuki H; Fowler TJ; Tierney ML Plant Mol Biol; 1993 Jan; 21(1):109-19. PubMed ID: 7678758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]