These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. A rapid GC-MS method for quantification of positional and geometric isomers of fatty acid methyl esters. Ecker J; Scherer M; Schmitz G; Liebisch G J Chromatogr B Analyt Technol Biomed Life Sci; 2012 May; 897():98-104. PubMed ID: 22542399 [TBL] [Abstract][Full Text] [Related]
10. Comparison of GC stationary phases for the separation of fatty acid methyl esters in biodiesel fuels. Goding JC; Ragon DY; O'Connor JB; Boehm SJ; Hupp AM Anal Bioanal Chem; 2013 Jul; 405(18):6087-94. PubMed ID: 23728727 [TBL] [Abstract][Full Text] [Related]
11. Determination of the composition of fatty acid mixtures using GC x FI-MS: a comprehensive two-dimensional separation approach. Hejazi L; Ebrahimi D; Guilhaus M; Hibbert DB Anal Chem; 2009 Feb; 81(4):1450-8. PubMed ID: 19146461 [TBL] [Abstract][Full Text] [Related]
12. Conventional and fast gas chromatography analysis of biodiesel blends using an ionic liquid stationary phase. Ragonese C; Tranchida PQ; Sciarrone D; Mondello L J Chromatogr A; 2009 Dec; 1216(51):8992-7. PubMed ID: 19913232 [TBL] [Abstract][Full Text] [Related]
13. Gibbs energy additivity approaches to QSRR in generating gas chromatographic retention time for identification of fatty acid methyl ester. Pojjanapornpun S; Aryusuk K; Lilitchan S; Krisnangkura K Anal Bioanal Chem; 2017 Apr; 409(11):2777-2789. PubMed ID: 28168549 [TBL] [Abstract][Full Text] [Related]
14. Thermally sensitive behavior explanation for unusual orthogonality observed in comprehensive two-dimensional gas chromatography comprising a single ionic liquid stationary phase. Nolvachai Y; Kulsing C; Marriott PJ Anal Chem; 2015 Jan; 87(1):538-44. PubMed ID: 25486525 [TBL] [Abstract][Full Text] [Related]
15. Characterization of biodiesel and biodiesel blends using comprehensive two-dimensional gas chromatography. Tiyapongpattana W; Wilairat P; Marriott PJ J Sep Sci; 2008 Aug; 31(14):2640-9. PubMed ID: 18693307 [TBL] [Abstract][Full Text] [Related]
16. Separation of the fatty acids in menhaden oil as methyl esters with a highly polar ionic liquid gas chromatographic column and identification by time of flight mass spectrometry. Fardin-Kia AR; Delmonte P; Kramer JK; Jahreis G; Kuhnt K; Santercole V; Rader JI Lipids; 2013 Dec; 48(12):1279-95. PubMed ID: 24043585 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of the retention pattern on ionic liquid columns for gas chromatographic analyses of fatty acid methyl esters. Lin CC; Wasta Z; Mjøs SA J Chromatogr A; 2014 Jul; 1350():83-91. PubMed ID: 24873965 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of poly(90% biscyanopropyl/10% cyanopropylphenyl siloxane) capillary columns for the gas chromatographic quantification of trans fatty acids in non-hydrogenated vegetable oils. Delmonte P J Chromatogr A; 2016 Aug; 1460():160-72. PubMed ID: 27470095 [TBL] [Abstract][Full Text] [Related]
19. Ionic liquids as stationary phases for fatty acid analysis by gas chromatography. Fanali C; Micalizzi G; Dugo P; Mondello L Analyst; 2017 Dec; 142(24):4601-4612. PubMed ID: 29143841 [TBL] [Abstract][Full Text] [Related]
20. Application of ethyl esters and d3-methyl esters as internal standards for the gas chromatographic quantification of transesterified fatty acid methyl esters in food. Thurnhofer S; Vetter W J Agric Food Chem; 2006 May; 54(9):3209-14. PubMed ID: 16637674 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]