These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 23256664)
1. Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis. Olah GA; Goeppert A; Czaun M; Prakash GK J Am Chem Soc; 2013 Jan; 135(2):648-50. PubMed ID: 23256664 [TBL] [Abstract][Full Text] [Related]
2. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen. Olah GA; Goeppert A; Czaun M; Mathew T; May RB; Prakash GK J Am Chem Soc; 2015 Jul; 137(27):8720-9. PubMed ID: 26086090 [TBL] [Abstract][Full Text] [Related]
3. Efficient utilization of greenhouse gas in a gas-to-liquids process combined with carbon dioxide reforming of methane. Ha KS; Bae JW; Woo KJ; Jun KW Environ Sci Technol; 2010 Feb; 44(4):1412-7. PubMed ID: 20078033 [TBL] [Abstract][Full Text] [Related]
4. Steam reforming of crude glycerol with in situ CO(2) sorption. Dou B; Rickett GL; Dupont V; Williams PT; Chen H; Ding Y; Ghadiri M Bioresour Technol; 2010 Apr; 101(7):2436-42. PubMed ID: 19945865 [TBL] [Abstract][Full Text] [Related]
5. Self-sufficient and exclusive oxygenation of methane and its source materials with oxygen to methanol via metgas using oxidative bi-reforming. Olah GA; Prakash GK; Goeppert A; Czaun M; Mathew T J Am Chem Soc; 2013 Jul; 135(27):10030-1. PubMed ID: 23795911 [TBL] [Abstract][Full Text] [Related]
6. Hydrogen production by sorption-enhanced steam reforming of glycerol. Dou B; Dupont V; Rickett G; Blakeman N; Williams PT; Chen H; Ding Y; Ghadiri M Bioresour Technol; 2009 Jul; 100(14):3540-7. PubMed ID: 19318245 [TBL] [Abstract][Full Text] [Related]
7. High purity H2 by sorption-enhanced chemical looping reforming of waste cooking oil in a packed bed reactor. Pimenidou P; Rickett G; Dupont V; Twigg MV Bioresour Technol; 2010 Dec; 101(23):9279-86. PubMed ID: 20655199 [TBL] [Abstract][Full Text] [Related]
8. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis. Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583 [TBL] [Abstract][Full Text] [Related]
9. Steam reforming of biodiesel by-product to make renewable hydrogen. Slinn M; Kendall K; Mallon C; Andrews J Bioresour Technol; 2008 Sep; 99(13):5851-8. PubMed ID: 18032034 [TBL] [Abstract][Full Text] [Related]
10. Biogas as a fuel for solid oxide fuel cells and synthesis gas production: effects of ceria-doping and hydrogen sulfide on the performance of nickel-based anode materials. Laycock CJ; Staniforth JZ; Ormerod RM Dalton Trans; 2011 May; 40(20):5494-504. PubMed ID: 21494706 [TBL] [Abstract][Full Text] [Related]
11. Steam reforming of bio-oil from rice husks fast pyrolysis for hydrogen production. Chen T; Wu C; Liu R Bioresour Technol; 2011 Oct; 102(19):9236-40. PubMed ID: 21820897 [TBL] [Abstract][Full Text] [Related]
12. Template-Assisted Wet-Combustion Synthesis of Fibrous Nickel-Based Catalyst for Carbon Dioxide Methanation and Methane Steam Reforming. Aghayan M; Potemkin DI; Rubio-Marcos F; Uskov SI; Snytnikov PV; Hussainova I ACS Appl Mater Interfaces; 2017 Dec; 9(50):43553-43562. PubMed ID: 29155551 [TBL] [Abstract][Full Text] [Related]
13. In situ Raman and pulse reaction study on the partial oxidation of methane to synthesis gas over a Pt/Al2O3 catalyst. Wang ML; Zheng HZ; Li JM; Weng WZ; Xia WS; Huang CJ; Wan HL Chem Asian J; 2011 Feb; 6(2):580-9. PubMed ID: 21254432 [TBL] [Abstract][Full Text] [Related]
14. Dry reforming of methane to syngas: a potential alternative process for value added chemicals-a techno-economic perspective. Mondal K; Sasmal S; Badgandi S; Chowdhury DR; Nair V Environ Sci Pollut Res Int; 2016 Nov; 23(22):22267-22273. PubMed ID: 26939689 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises. He L; Chen D ChemSusChem; 2012 Mar; 5(3):587-95. PubMed ID: 22378630 [TBL] [Abstract][Full Text] [Related]
16. Chemical looping reforming of waste cooking oil in packed bed reactor. Pimenidou P; Rickett G; Dupont V; Twigg MV Bioresour Technol; 2010 Aug; 101(16):6389-97. PubMed ID: 20359888 [TBL] [Abstract][Full Text] [Related]
17. Preparation of Ni-based metal monolithic catalysts and a study of their performance in methane reforming with CO2. Wang K; Li X; Ji S; Huang B; Li C ChemSusChem; 2008; 1(6):527-33. PubMed ID: 18702151 [TBL] [Abstract][Full Text] [Related]
18. Control of hydrocarbon content of a reforming gas by using a hydrogenation catalyst. Inoue K; Kawamoto K Chemosphere; 2010 Jan; 78(5):599-603. PubMed ID: 20022077 [TBL] [Abstract][Full Text] [Related]
19. Co-processing methane in high temperature steam gasification of biomass. Palumbo AW; Jorgensen EL; Sorli JC; Weimer AW Bioresour Technol; 2013 Jan; 128():553-9. PubMed ID: 23208181 [TBL] [Abstract][Full Text] [Related]
20. Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane. Al-Fatesh AS; Kumar R; Fakeeha AH; Kasim SO; Khatri J; Ibrahim AA; Arasheed R; Alabdulsalam M; Lanre MS; Osman AI; Abasaeed AE; Bagabas A Sci Rep; 2020 Aug; 10(1):13861. PubMed ID: 32807834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]