These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23256747)

  • 1. Mimicking nature: synthetic nicotinamide cofactors for C═C bioreduction using enoate reductases.
    Paul CE; Gargiulo S; Opperman DJ; Lavandera I; Gotor-Fernández V; Gotor V; Taglieber A; Arends IW; Hollmann F
    Org Lett; 2013 Jan; 15(1):180-3. PubMed ID: 23256747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Biochemical Evaluation of Nicotinamide Derivatives as NADH Analogue Coenzymes in Ene Reductase.
    Falcone N; She Z; Syed J; Lough A; Kraatz HB
    Chembiochem; 2019 Mar; 20(6):838-845. PubMed ID: 30500101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of biliverdin-IXalpha reductase by inorganic phosphate and related anions.
    Franklin E; Browne S; Hayes J; Boland C; Dunne A; Elliot G; Mantle TJ
    Biochem J; 2007 Jul; 405(1):61-7. PubMed ID: 17402939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microplate filtration assay for nicotinamide release from NAD using a boronic acid resin.
    McDonagh T; Hixon J; DiStefano PS; Curtis R; Napper AD
    Methods; 2005 Aug; 36(4):346-50. PubMed ID: 16085423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Biomimetic Cofactors According to Stability, Redox Potentials, and Enzymatic Conversion by NADH Oxidase from Lactobacillus pentosus.
    Nowak C; Pick A; Csepei LI; Sieber V
    Chembiochem; 2017 Oct; 18(19):1944-1949. PubMed ID: 28752634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asymmetric bioreduction of activated alkenes by a novel isolate of Achromobacter species producing enoate reductase.
    Liu YJ; Pei XQ; Lin H; Gai P; Liu YC; Wu ZL
    Appl Microbiol Biotechnol; 2012 Aug; 95(3):635-45. PubMed ID: 22526807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of trans-2-enoyl-CoA reductases from Clostridium acetobutylicum and Treponema denticola: insights into the substrate specificity and the catalytic mechanism.
    Hu K; Zhao M; Zhang T; Zha M; Zhong C; Jiang Y; Ding J
    Biochem J; 2013 Jan; 449(1):79-89. PubMed ID: 23050861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic regeneration of nicotinamide cofactor biomimetics drives biocatalytic reduction by Old Yellow enzymes.
    Luo F; Gu X; Zhu Y; Zhou J; Xu G; Ni Y
    Bioorg Chem; 2024 Jun; 147():107418. PubMed ID: 38703441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. beta-1,2,3-Triazolyl-nucleosides as nicotinamide riboside mimics.
    Amigues EJ; Armstrong E; Dvorakova M; Migaud ME; Huang M
    Nucleosides Nucleotides Nucleic Acids; 2009 Mar; 28(3):238-59. PubMed ID: 19333861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot access to a library of structurally diverse nicotinamide derivatives via a three-component formal aza [3 + 3] cycloaddition.
    Tenti G; Ramos MT; Menéndez JC
    ACS Comb Sci; 2012 Oct; 14(10):551-7. PubMed ID: 22954155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A survey of synthetic nicotinamide cofactors in enzymatic processes.
    Paul CE; Hollmann F
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):4773-8. PubMed ID: 27094184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family.
    Stuermer R; Hauer B; Hall M; Faber K
    Curr Opin Chem Biol; 2007 Apr; 11(2):203-13. PubMed ID: 17353140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and utility of 14C-labeled nicotinamide cofactors.
    Markham KA; Sikorski RS; Kohen A
    Anal Biochem; 2004 Feb; 325(1):62-7. PubMed ID: 14715285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Syntheses of nicotinamide riboside and derivatives: effective agents for increasing nicotinamide adenine dinucleotide concentrations in mammalian cells.
    Yang T; Chan NY; Sauve AA
    J Med Chem; 2007 Dec; 50(26):6458-61. PubMed ID: 18052316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering natural and noncanonical nicotinamide cofactor-dependent enzymes: design principles and technology development.
    King E; Maxel S; Li H
    Curr Opin Biotechnol; 2020 Dec; 66():217-226. PubMed ID: 32956903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NAD(P)H-independent asymmetric C=C bond reduction catalyzed by ene reductases by using artificial co-substrates as the hydrogen donor.
    Winkler CK; Clay D; Entner M; Plank M; Faber K
    Chemistry; 2014 Jan; 20(5):1403-9. PubMed ID: 24382795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and applications of sensitive enzyme immunoassays specific for clostridial enoate reductases.
    Krause G; Simon H
    Z Naturforsch C J Biosci; 1989; 44(5-6):345-52. PubMed ID: 2669778
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Nesbitt NM; Zheng X; Li Z; Manso JA; Yen WY; Malone LE; Ripoll-Rozada J; Pereira PJB; Mantle TJ; Wang J; Bahou WF
    J Biol Chem; 2018 Apr; 293(15):5431-5446. PubMed ID: 29487133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-enzymatic regeneration of nicotinamide and flavin cofactors for monooxygenase catalysis.
    Hollmann F; Hofstetter K; Schmid A
    Trends Biotechnol; 2006 Apr; 24(4):163-71. PubMed ID: 16488494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic cofactors and methods for their recycling.
    Zachos I; Nowak C; Sieber V
    Curr Opin Chem Biol; 2019 Apr; 49():59-66. PubMed ID: 30336443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.