BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 23256782)

  • 21. Effector analogues detect varied allosteric roles for conserved protein-effector interactions in pyruvate kinase isozymes.
    Alontaga AY; Fenton AW
    Biochemistry; 2011 Mar; 50(11):1934-9. PubMed ID: 21261284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. pH studies on the chemical mechanism of rabbit muscle pyruvate kinase. 2. Physiological substrates and phosphoenol-alpha-ketobutyrate.
    Dougherty TM; Cleland WW
    Biochemistry; 1985 Oct; 24(21):5875-80. PubMed ID: 3878724
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 2-[(4-Bromo-2,3-dioxobutyl)thio]-1,N6-ethenoadenosine 5'-diphosphate. A new fluorescent affinity label of a tyrosyl residue in the active site of rabbit muscle pyruvate kinase.
    DeCamp DL; Colman RF
    J Biol Chem; 1989 May; 264(14):8430-41. PubMed ID: 2489027
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Allosteric regulation of human liver pyruvate kinase by peptides that mimic the phosphorylated/dephosphorylated N-terminus.
    Prasannan CB; Tang Q; Fenton AW
    Methods Mol Biol; 2012; 796():335-49. PubMed ID: 22052499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual effects of phenylalanine analogs on rabbit-muscle pyruvate kinase activity.
    Izbicka-Dimitrijević E; Mastalerz P; Kochman M
    Eur J Biochem; 1981 Mar; 114(3):565-8. PubMed ID: 7238501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformational changes in the allosteric inhibition of muscle pyruvate kinase by phenylalanine.
    Kayne FJ; Price NC
    Biochemistry; 1972 Nov; 11(23):4415-20. PubMed ID: 5079905
    [No Abstract]   [Full Text] [Related]  

  • 27. Kinetic isotope effects on substrate association: reactions of phosphoenolpyruvate with phosphoenolpyruvate carboxylase and pyruvate kinase.
    Gawlita E; Caldwell WS; O'Leary MH; Paneth P; Anderson VE
    Biochemistry; 1995 Feb; 34(8):2577-83. PubMed ID: 7873538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural aspects of manganese-pyruvate kinase substrate and inhibitor complexes deduced from proton magnetic relaxation rates of pyruvate and a phosphoenolpyruvate analog.
    James TL; Cohn M
    J Biol Chem; 1974 Jun; 249(11):3519-26. PubMed ID: 4831226
    [No Abstract]   [Full Text] [Related]  

  • 29. Synergistic effects of proton and phenylalanine on the regulation of muscle pyruvate kinase.
    Consler TG; Jennewein MJ; Cai GZ; Lee JC
    Biochemistry; 1990 Dec; 29(48):10765-71. PubMed ID: 2176882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Magnetic resonance studies of the formation of the ternary phosphoenolpyruvate-gadolinum-muscle pyruvate kinase complex.
    Cottam GL; Valentine KM; Thompson BC; Sherry AD
    Biochemistry; 1974 Aug; 13(17):3532-7. PubMed ID: 4846293
    [No Abstract]   [Full Text] [Related]  

  • 31. Effects of ions on ligand binding to pyruvate kinase: mapping the binding site with infrared spectroscopy.
    Kumar S; Barth A
    J Phys Chem B; 2011 May; 115(20):6784-9. PubMed ID: 21539324
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amino acid effector binding to rabbit muscle pyruvate kinase.
    Kayne FJ; Price NC
    Arch Biochem Biophys; 1973 Nov; 159(1):292-6. PubMed ID: 4784462
    [No Abstract]   [Full Text] [Related]  

  • 33. Functional tunability from a distance: Rheostat positions influence allosteric coupling between two distant binding sites.
    Wu T; Swint-Kruse L; Fenton AW
    Sci Rep; 2019 Nov; 9(1):16957. PubMed ID: 31740686
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of pH on the interaction of substrates and effector to yeast and rabbit muscle pyruvate kinase.
    Brown CE; Taylor JM; Chan LM
    Biochim Biophys Acta; 1985 Jul; 829(3):342-7. PubMed ID: 3890954
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleotide specificity of pyruvate kinase and phosphoenolpyruvate carboxykinase.
    Bârzu O; Abrudan I; Proinov I; Kiss L; Ty NG; Jebeleanu G; Goia I; Kezdi M; Mantsch HH
    Biochim Biophys Acta; 1976 Dec; 452(2):406-12. PubMed ID: 1009117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The impact of ions on allosteric functions in human liver pyruvate kinase.
    Fenton AW; Alontaga AY
    Methods Enzymol; 2009; 466():83-107. PubMed ID: 21609859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional energetic landscape in the allosteric regulation of muscle pyruvate kinase. 3. Mechanism.
    Herman P; Lee JC
    Biochemistry; 2009 Oct; 48(40):9466-70. PubMed ID: 19719322
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structure of Escherichia coli pyruvate kinase type I: molecular basis of the allosteric transition.
    Mattevi A; Valentini G; Rizzi M; Speranza ML; Bolognesi M; Coda A
    Structure; 1995 Jul; 3(7):729-41. PubMed ID: 8591049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 1-Carboxyallenyl phosphate, an allenic analogue of phosphoenolpyruvate.
    Wirsching P; O'Leary MH
    Biochemistry; 1988 Feb; 27(4):1355-60. PubMed ID: 3365391
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The allosteric effect of fructose bisphosphate on muscle pyruvate kinase studied by infrared spectroscopy.
    Kumar S; Barth A
    J Phys Chem B; 2011 Oct; 115(39):11501-5. PubMed ID: 21870844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.