These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 23256889)
1. CYPSI: a structure-based interface for cytochrome P450s and ligands in Arabidopsis thaliana. Zhang G; Zhang Y; Su Z BMC Bioinformatics; 2012 Dec; 13():332. PubMed ID: 23256889 [TBL] [Abstract][Full Text] [Related]
2. Light and auxin responsive cytochrome P450s from Withania somnifera Dunal: cloning, expression and molecular modelling of two pairs of homologue genes with differential regulation. Srivastava S; Sangwan RS; Tripathi S; Mishra B; Narnoliya LK; Misra LN; Sangwan NS Protoplasma; 2015 Nov; 252(6):1421-37. PubMed ID: 25687294 [TBL] [Abstract][Full Text] [Related]
3. Structural insights into understudied human cytochrome P450 enzymes. Machalz D; Pach S; Bermudez M; Bureik M; Wolber G Drug Discov Today; 2021 Oct; 26(10):2456-2464. PubMed ID: 34161845 [TBL] [Abstract][Full Text] [Related]
4. SuperCYP: a comprehensive database on Cytochrome P450 enzymes including a tool for analysis of CYP-drug interactions. Preissner S; Kroll K; Dunkel M; Senger C; Goldsobel G; Kuzman D; Guenther S; Winnenburg R; Schroeder M; Preissner R Nucleic Acids Res; 2010 Jan; 38(Database issue):D237-43. PubMed ID: 19934256 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the cyclophilin gene family of Arabidopsis thaliana and phylogenetic analysis of known cyclophilin proteins. Chou IT; Gasser CS Plant Mol Biol; 1997 Dec; 35(6):873-92. PubMed ID: 9426607 [TBL] [Abstract][Full Text] [Related]
6. Prediction and analysis of the modular structure of cytochrome P450 monooxygenases. Sirim D; Widmann M; Wagner F; Pleiss J BMC Struct Biol; 2010 Oct; 10():34. PubMed ID: 20950472 [TBL] [Abstract][Full Text] [Related]
7. Computational identification and binding analysis of orphan human cytochrome P450 4X1 enzyme with substrates. Kumar S BMC Res Notes; 2015 Jan; 8():9. PubMed ID: 25595103 [TBL] [Abstract][Full Text] [Related]
8. Cytochrome P450 mono-oxygenases in conifer genomes: discovery of members of the terpenoid oxygenase superfamily in spruce and pine. Hamberger B; Bohlmann J Biochem Soc Trans; 2006 Dec; 34(Pt 6):1209-14. PubMed ID: 17073787 [TBL] [Abstract][Full Text] [Related]
9. The Cytochrome P450 superfamily complement (CYPome) in the annelid Capitella teleta. Dejong CA; Wilson JY PLoS One; 2014; 9(11):e107728. PubMed ID: 25390889 [TBL] [Abstract][Full Text] [Related]
10. Diversity and evolution of cytochrome P450s of Jacobaea vulgaris and Jacobaea aquatica. Chen Y; Klinkhamer PGL; Memelink J; Vrieling K BMC Plant Biol; 2020 Jul; 20(1):342. PubMed ID: 32689941 [TBL] [Abstract][Full Text] [Related]
11. Insights into drug metabolism from modelling studies of cytochrome P450-drug interactions. Maréchal JD; Sutcliffe MJ Curr Top Med Chem; 2006; 6(15):1619-26. PubMed ID: 16918473 [TBL] [Abstract][Full Text] [Related]
12. Oxidation of 3-aminobenzanthrone, a human metabolite of carcinogenic environmental pollutant 3-nitrobenzanthrone, by cytochromes P450 - similarity between human and rat enzymes. Mizerovska J; Dracinska H; Arlt VM; Schmeiser HH; Frei E; Stiborova M Neuro Endocrinol Lett; 2009; 30 Suppl 1():52-9. PubMed ID: 20027145 [TBL] [Abstract][Full Text] [Related]
13. Interactions of cytochrome P450s with their ligands. Conner KP; Woods CM; Atkins WM Arch Biochem Biophys; 2011 Mar; 507(1):56-65. PubMed ID: 20939998 [TBL] [Abstract][Full Text] [Related]
14. Production and structural characterization of the cytochrome P450 enzymes in carotene ring hydroxylation. Wang J; Niu G; Guo Q; Liu L Methods Enzymol; 2022; 671():223-241. PubMed ID: 35878979 [TBL] [Abstract][Full Text] [Related]
15. Three novel cytochrome P450 genes identified in the marine polychaete Perinereis nuntia and their transcriptional response to xenobiotics. Zheng S; Chen B; Qiu X; Lin K; Yu X Aquat Toxicol; 2013 Jun; 134-135():11-22. PubMed ID: 23542651 [TBL] [Abstract][Full Text] [Related]
16. SuperCYPsPred-a web server for the prediction of cytochrome activity. Banerjee P; Dunkel M; Kemmler E; Preissner R Nucleic Acids Res; 2020 Jul; 48(W1):W580-W585. PubMed ID: 32182358 [TBL] [Abstract][Full Text] [Related]
17. The Cytochrome P450 Engineering Database: a navigation and prediction tool for the cytochrome P450 protein family. Fischer M; Knoll M; Sirim D; Wagner F; Funke S; Pleiss J Bioinformatics; 2007 Aug; 23(15):2015-7. PubMed ID: 17510166 [TBL] [Abstract][Full Text] [Related]
18. Versatile biocatalysis of fungal cytochrome P450 monooxygenases. Durairaj P; Hur JS; Yun H Microb Cell Fact; 2016 Jul; 15(1):125. PubMed ID: 27431996 [TBL] [Abstract][Full Text] [Related]
19. Ferrous and ferric state of cytochromes P450 in intact Escherichia coli cells: a possible role of cytochrome P450-flavodoxin interactions. Culka M; Milichovsky J; Jerabek P; Stiborova M; Martinek V Neuro Endocrinol Lett; 2015; 36 Suppl 1():29-37. PubMed ID: 26757119 [TBL] [Abstract][Full Text] [Related]
20. CYPminer: an automated cytochrome P450 identification, classification, and data analysis tool for genome data sets across kingdoms. Kweon O; Kim SJ; Kim JH; Nho SW; Bae D; Chon J; Hart M; Baek DH; Kim YC; Wang W; Kim SK; Sutherland JB; Cerniglia CE BMC Bioinformatics; 2020 Apr; 21(1):160. PubMed ID: 32349673 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]