BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 23257262)

  • 21. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice.
    Okkenhaug G; Zhu YG; He J; Li X; Luo L; Mulder J
    Environ Sci Technol; 2012 Mar; 46(6):3155-62. PubMed ID: 22309044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Variation in arsenic, lead and zinc tolerance and accumulation in six populations of Pteris vittata L. from China.
    Wu FY; Leung HM; Wu SC; Ye ZH; Wong MH
    Environ Pollut; 2009; 157(8-9):2394-404. PubMed ID: 19371990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of arsenic tolerance, uptake and accumulation between arsenic hyperaccumulator, Pteris vittata L. and non-accumulator, P. semipinnata L.--a hydroponic study.
    Lou LQ; Ye ZH; Wong MH
    J Hazard Mater; 2009 Nov; 171(1-3):436-42. PubMed ID: 19577839
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arsenic and heavy metal accumulation by Pteris vittata L. and P. umbrosa R. Br.
    Koller CE; Patrick JW; Rose RJ; Offler CE; MacFarlane GR
    Bull Environ Contam Toxicol; 2008 Feb; 80(2):128-33. PubMed ID: 18183339
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arsenic, antimony, and bismuth uptake and accumulation by plants in an old antimony mine, China.
    Wei C; Deng Q; Wu F; Fu Z; Xu L
    Biol Trace Elem Res; 2011 Dec; 144(1-3):1150-8. PubMed ID: 21547400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phytate induced arsenic uptake and plant growth in arsenic-hyperaccumulator Pteris vittata.
    Liu X; Fu JW; Tang N; da Silva EB; Cao Y; Turner BL; Chen Y; Ma LQ
    Environ Pollut; 2017 Jul; 226():212-218. PubMed ID: 28432964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of arsenic accumulation in 18 fern species and four Pteris vittata accessions.
    Srivastava M; Santos J; Srivastava P; Ma LQ
    Bioresour Technol; 2010 Apr; 101(8):2691-9. PubMed ID: 20044253
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata.
    Wang X; Ma LQ; Rathinasabapathi B; Cai Y; Liu YG; Zeng GM
    Environ Sci Technol; 2011 Nov; 45(22):9719-25. PubMed ID: 22029254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Selenium Increased Arsenic Accumulation by Upregulating the Expression of Genes Responsible for Arsenic Reduction, Translocation, and Sequestration in Arsenic Hyperaccumulator
    Dai ZH; Peng YJ; Ding S; Chen JY; He SX; Hu CY; Cao Y; Guan DX; Ma LQ
    Environ Sci Technol; 2022 Oct; 56(19):14146-14153. PubMed ID: 36121644
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phytoremediation of arsenic contaminated soil by Pteris vittata L. II. Effect on arsenic uptake and rice yield.
    Mandal A; Purakayastha TJ; Patra AK; Sanyal SK
    Int J Phytoremediation; 2012 Jul; 14(6):621-8. PubMed ID: 22908631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phytate promoted arsenic uptake and growth in arsenic-hyperaccumulator Pteris vittata by upregulating phosphorus transporters.
    Liu X; Feng HY; Fu JW; Sun D; Cao Y; Chen Y; Xiang P; Liu Y; Ma LQ
    Environ Pollut; 2018 Oct; 241():240-246. PubMed ID: 29807282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arsenic enhanced plant growth and altered rhizosphere characteristics of hyperaccumulator Pteris vittata.
    Xu JY; Li HB; Liang S; Luo J; Ma LQ
    Environ Pollut; 2014 Nov; 194():105-111. PubMed ID: 25103044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic.
    Shelmerdine PA; Black CR; McGrath SP; Young SD
    Environ Pollut; 2009 May; 157(5):1589-96. PubMed ID: 19171413
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation.
    Caille N; Swanwick S; Zhao FJ; McGrath SP
    Environ Pollut; 2004 Nov; 132(1):113-20. PubMed ID: 15276279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pteris vittata - revisited: uptake of As and its speciation, impact of P, role of phytochelatins and S.
    Vetterlein D; Wesenberg D; Nathan P; Bräutigam A; Schierhorn A; Mattusch J; Jahn R
    Environ Pollut; 2009 Nov; 157(11):3016-24. PubMed ID: 19560846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antimony uptake and speciation, and associated mechanisms in two As-hyperaccumulators Pteris vittata and Pteris cretica.
    He SX; Peng YJ; Chen JY; Liu CJ; Cao Y; Li W; Ma LQ
    J Hazard Mater; 2023 Aug; 455():131607. PubMed ID: 37182466
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study.
    Kertulis-Tartar GM; Ma LQ; Tu C; Chirenje T
    Int J Phytoremediation; 2006; 8(4):311-22. PubMed ID: 17305305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of arsenic on nitrate metabolism in arsenic hyperaccumulating and non-hyperaccumulating ferns.
    Singh N; Ma LQ; Vu JC; Raj A
    Environ Pollut; 2009; 157(8-9):2300-5. PubMed ID: 19406540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L.
    Li WX; Chen TB; Huang ZC; Lei M; Liao XY
    Chemosphere; 2006 Feb; 62(5):803-9. PubMed ID: 15972226
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Arsenic extraction and speciation in plants: Method comparison and development.
    Zhao D; Li HB; Xu JY; Luo J; Ma LQ
    Sci Total Environ; 2015 Aug; 523():138-45. PubMed ID: 25863504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.