BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23257292)

  • 21. Post-translational modifications and the Warburg effect.
    Hitosugi T; Chen J
    Oncogene; 2014 Aug; 33(34):4279-85. PubMed ID: 24096483
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy.
    Shen L; Sun X; Fu Z; Yang G; Li J; Yao L
    Clin Cancer Res; 2012 Mar; 18(6):1561-7. PubMed ID: 22307140
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cancer-like metabolism of the mammalian retina.
    Ng SK; Wood JP; Chidlow G; Han G; Kittipassorn T; Peet DJ; Casson RJ
    Clin Exp Ophthalmol; 2015; 43(4):367-76. PubMed ID: 25330055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondria in cancer: at the crossroads of life and death.
    Fogg VC; Lanning NJ; Mackeigan JP
    Chin J Cancer; 2011 Aug; 30(8):526-39. PubMed ID: 21801601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Revisiting the Warburg effect in cancer cells with proteomics. The emergence of new approaches to diagnosis, prognosis and therapy.
    Scatena R; Bottoni P; Pontoglio A; Giardina B
    Proteomics Clin Appl; 2010 Feb; 4(2):143-58. PubMed ID: 21137040
    [TBL] [Abstract][Full Text] [Related]  

  • 26. p53 and glucose metabolism: an orchestra to be directed in cancer therapy.
    Gomes AS; Ramos H; Soares J; Saraiva L
    Pharmacol Res; 2018 May; 131():75-86. PubMed ID: 29580896
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of glucose metabolism by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases in cancer.
    Yalcin A; Telang S; Clem B; Chesney J
    Exp Mol Pathol; 2009 Jun; 86(3):174-9. PubMed ID: 19454274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes.
    Levine AJ; Puzio-Kuter AM
    Science; 2010 Dec; 330(6009):1340-4. PubMed ID: 21127244
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Warburg effect: insights from the past decade.
    Upadhyay M; Samal J; Kandpal M; Singh OV; Vivekanandan P
    Pharmacol Ther; 2013 Mar; 137(3):318-30. PubMed ID: 23159371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetic alterations in Krebs cycle and its impact on cancer pathogenesis.
    Sajnani K; Islam F; Smith RA; Gopalan V; Lam AK
    Biochimie; 2017 Apr; 135():164-172. PubMed ID: 28219702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect.
    Weljie AM; Jirik FR
    Int J Biochem Cell Biol; 2011 Jul; 43(7):981-9. PubMed ID: 20797448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 'The metabolism of tumours': 70 years later.
    Semenza GL; Artemov D; Bedi A; Bhujwalla Z; Chiles K; Feldser D; Laughner E; Ravi R; Simons J; Taghavi P; Zhong H
    Novartis Found Symp; 2001; 240():251-60; discussion 260-4. PubMed ID: 11727934
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondria in cancer: not just innocent bystanders.
    Frezza C; Gottlieb E
    Semin Cancer Biol; 2009 Feb; 19(1):4-11. PubMed ID: 19101633
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pyruvate uptake is increased in highly invasive ovarian cancer cells under anoikis conditions for anaplerosis, mitochondrial function, and migration.
    Caneba CA; Bellance N; Yang L; Pabst L; Nagrath D
    Am J Physiol Endocrinol Metab; 2012 Oct; 303(8):E1036-52. PubMed ID: 22895781
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetically-defined metabolic reprogramming in cancer.
    Mullen AR; DeBerardinis RJ
    Trends Endocrinol Metab; 2012 Nov; 23(11):552-9. PubMed ID: 22858391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Warburg and Krebs and related effects in cancer.
    Unterlass JE; Curtin NJ
    Expert Rev Mol Med; 2019 Sep; 21():e4. PubMed ID: 31558177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer.
    King A; Selak MA; Gottlieb E
    Oncogene; 2006 Aug; 25(34):4675-82. PubMed ID: 16892081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oncometabolites-driven tumorigenesis: From genetics to targeted therapy.
    Morin A; Letouzé E; Gimenez-Roqueplo AP; Favier J
    Int J Cancer; 2014 Nov; 135(10):2237-48. PubMed ID: 25124653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymatic features of the glucose metabolism in tumor cells.
    Herling A; König M; Bulik S; Holzhütter HG
    FEBS J; 2011 Jul; 278(14):2436-59. PubMed ID: 21564549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Warburg meets non-coding RNAs: the emerging role of ncRNA in regulating the glucose metabolism of cancer cells.
    Yu C; Xue J; Zhu W; Jiao Y; Zhang S; Cao J
    Tumour Biol; 2015 Jan; 36(1):81-94. PubMed ID: 25431262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.