BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 23257325)

  • 21. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.
    Shi W; Wang L; Rousseau DP; Lens PN
    Environ Sci Pollut Res Int; 2010 May; 17(4):824-33. PubMed ID: 20213308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of wastewater chlorination on endocrine disruptor removal.
    Noutsopoulos C; Mamais D; Samaras V; Bouras T; Marneri M; Antoniou K
    Water Sci Technol; 2013; 67(7):1551-6. PubMed ID: 23552244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seasonal variations in the concentration and removal of nonylphenol ethoxylates from the wastewater of a sewage treatment plant.
    Gao D; Li Z; Guan J; Liang H
    J Environ Sci (China); 2017 Apr; 54():217-223. PubMed ID: 28391932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Occurrence and fate of endocrine disrupting compounds in wastewater treatment plants in Israel and the Palestinian West Bank.
    Dotan P; Godinger T; Odeh W; Groisman L; Al-Khateeb N; Rabbo AA; Tal A; Arnon S
    Chemosphere; 2016 Jul; 155():86-93. PubMed ID: 27107387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monitoring and mass balance analysis of endocrine disrupting compounds and their transformation products in an anaerobic-anoxic-oxic wastewater treatment system in Xiamen, China.
    Ashfaq M; Li Y; Wang Y; Qin D; Rehman MSU; Rashid A; Yu CP; Sun Q
    Chemosphere; 2018 Aug; 204():170-177. PubMed ID: 29655110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Selected personal care products and endocrine disruptors in biosolids: an Australia-wide survey.
    Langdon KA; Warne MS; Smernik RJ; Shareef A; Kookana RS
    Sci Total Environ; 2011 Feb; 409(6):1075-81. PubMed ID: 21216442
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fate of diclofenac in municipal wastewater treatment plant - a review.
    Vieno N; Sillanpää M
    Environ Int; 2014 Aug; 69():28-39. PubMed ID: 24791707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of the OECD 301F respirometric test for the biodegradability assessment of various potential endocrine disrupting chemicals.
    Stasinakis AS; Petalas AV; Mamais D; Thomaidis NS
    Bioresour Technol; 2008 Jun; 99(9):3458-67. PubMed ID: 17881226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Occurrence of pharmaceuticals and endocrine disruptors in raw sewage and their behavior in UASB reactors operated at different hydraulic retention times.
    Queiroz FB; Brandt EM; Aquino SF; Chernicharo CA; Afonso RJ
    Water Sci Technol; 2012; 66(12):2562-9. PubMed ID: 23109571
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Occurrence and risk assessment of nonylphenol and nonylphenol ethoxylates in sewage sludge from different conventional treatment processes.
    González MM; Martín J; Santos JL; Aparicio I; Alonso E
    Sci Total Environ; 2010 Jan; 408(3):563-70. PubMed ID: 19896162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fate and degradation kinetics of nonylphenol compounds in aerobic batch digesters.
    Ömeroğlu S; Sanin FD
    Water Res; 2014 Nov; 64():1-12. PubMed ID: 25025176
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Degradation of endocrine-disrupting chemicals during activated sludge reduction by ozone.
    Qiang Z; Nie Y; Ben W; Qu J; Zhang H
    Chemosphere; 2013 Apr; 91(3):366-73. PubMed ID: 23273738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions.
    Barber LB; Loyo-Rosales JE; Rice CP; Minarik TA; Oskouie AK
    Sci Total Environ; 2015 Jun; 517():195-206. PubMed ID: 25727675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduction of endocrine disruptor emissions in the environment: the benefit of wastewater treatment.
    Janex-Habibi ML; Huyard A; Esperanza M; Bruchet A
    Water Res; 2009 Apr; 43(6):1565-76. PubMed ID: 19203777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impact of secondary treatment types and sludge handling processes on estrogen concentration in wastewater sludge.
    Marti EJ; Batista JR
    Sci Total Environ; 2014 Feb; 470-471():1056-67. PubMed ID: 24239827
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area.
    Yan Q; Gao X; Chen YP; Peng XY; Zhang YX; Gan XM; Zi CF; Guo JS
    Sci Total Environ; 2014 Feb; 470-471():618-30. PubMed ID: 24176710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Occurrence, fate, and risk assessment of selected endocrine disrupting chemicals in wastewater treatment plants and receiving river of Shanghai, China.
    Xu G; Ma S; Tang L; Sun R; Xiang J; Xu B; Bao Y; Wu M
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):25442-25450. PubMed ID: 27699660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters.
    Archer E; Petrie B; Kasprzyk-Hordern B; Wolfaardt GM
    Chemosphere; 2017 May; 174():437-446. PubMed ID: 28187390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Occurrence and removal efficiencies of eight EDCs and estrogenicity in a STP.
    Zhang Z; Feng Y; Gao P; Wang C; Ren N
    J Environ Monit; 2011 May; 13(5):1366-73. PubMed ID: 21390396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of surfactants nonylphenol ethoxylates from municipal sewage-comparison of an A/O process and biological aerated filters.
    Gao D; Li Z; Guan J; Li Y; Ren N
    Chemosphere; 2014 Feb; 97():130-4. PubMed ID: 24268176
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.