BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 23257327)

  • 1. Photoacoustic FTIR spectroscopic study of undisturbed human cortical bone.
    Gu C; Katti DR; Katti KS
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():25-37. PubMed ID: 23257327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoacoustic FTIR spectroscopic study of undisturbed nacre from red abalone.
    Verma D; Katti K; Katti D
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Jul; 64(4):1051-7. PubMed ID: 16332453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of chronic hypoperfusion on rat cranial bone mineral and organic matrix. A Fourier transform infrared spectroscopy study.
    Boyar H; Zorlu F; Mut M; Severcan F
    Anal Bioanal Chem; 2004 Jun; 379(3):433-8. PubMed ID: 15042274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in situ FTIR step-scan photoacoustic investigation of kerogen and minerals in oil shale.
    Alstadt KN; Katti DR; Katti KS
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Apr; 89():105-13. PubMed ID: 22261101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourier transform infrared difference study of tyrosineD oxidation and plastoquinone QA reduction in photosystem II.
    Hienerwadel R; Boussac A; Breton J; Berthomieu C
    Biochemistry; 1996 Dec; 35(48):15447-60. PubMed ID: 8952498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials.
    Prati S; Joseph E; Sciutto G; Mazzeo R
    Acc Chem Res; 2010 Jun; 43(6):792-801. PubMed ID: 20476733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A1 reduction in intact cyanobacterial photosystem I particles studied by time-resolved step-scan Fourier transform infrared difference spectroscopy and isotope labeling.
    Sivakumar V; Wang R; Hastings G
    Biochemistry; 2005 Feb; 44(6):1880-93. PubMed ID: 15697214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu(4) PO(4)(3-) vibration.
    Miller LM; Vairavamurthy V; Chance MR; Mendelsohn R; Paschalis EP; Betts F; Boskey AL
    Biochim Biophys Acta; 2001 Jul; 1527(1-2):11-9. PubMed ID: 11420138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination of organic coffee via Fourier transform infrared-photoacoustic spectroscopy.
    Gordillo-Delgado F; Marín E; Cortés-Hernández DM; Mejía-Morales C; García-Salcedo AJ
    J Sci Food Agric; 2012 Aug; 92(11):2316-9. PubMed ID: 22378589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fourier Transform Infrared Spectroscopy and Photoacoustic Spectroscopy for Saliva Analysis.
    Mikkonen JJ; Raittila J; Rieppo L; Lappalainen R; Kullaa AM; Myllymaa S
    Appl Spectrosc; 2016 Sep; 70(9):1502-10. PubMed ID: 27354404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nature of water in nacre: a 2D Fourier transform infrared spectroscopic study.
    Verma D; Katti K; Katti D
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):784-8. PubMed ID: 17030005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of peroxide value of edible oils by FTIR spectroscopy with the use of the spectral reconstitution technique.
    Yu X; van de Voort FR; Sedman J
    Talanta; 2007 Nov; 74(2):241-6. PubMed ID: 18371636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and characterization of two new composites: collagen-brushite and collagen octa-calcium phosphate.
    Jayaraman M; Subramanian MV
    Med Sci Monit; 2002 Nov; 8(11):BR481-7. PubMed ID: 12444373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical characterization of lased root surfaces using Fourier transform infrared photoacoustic spectroscopy.
    Spencer P; Trylovich DJ; Cobb CM
    J Periodontol; 1992 Jul; 63(7):633-6. PubMed ID: 1507041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone.
    Turunen MJ; Saarakkala S; Rieppo L; Helminen HJ; Jurvelin JS; Isaksson H
    Appl Spectrosc; 2011 Jun; 65(6):595-603. PubMed ID: 21639980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcification of senile cataractous lens determined by Fourier transform infrared (FTIR) and Raman microspectroscopies.
    Chen KH; Cheng WT; Li MJ; Yang DM; Lin SY
    J Microsc; 2005 Jul; 219(Pt 1):36-41. PubMed ID: 15998364
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A vibrational spectroscopic study of the phosphate mineral Wardite NaAl₃(PO₄)₂(OH)₄·2(H₂O).
    Frost RL; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul; 93():155-63. PubMed ID: 22472131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman spectroscopic study of the mineral arsenogorceixite BaAl₃AsO₃(OH)(AsO₄,PO₄)(OH,F)₆.
    Frost RL; Xi Y; Pogson RE
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jun; 91():301-6. PubMed ID: 22387680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman spectroscopic study of the hydroxy-phosphate mineral plumbogummite PbAl₃(PO₄)₂(OH,H₂O)₆.
    Frost RL; Palmer SJ; Xi Y; Čejka J; Sejkora J; Plášil J
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():431-4. PubMed ID: 22995465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-frequency fourier transform infrared spectroscopy of the oxygen-evolving and quinone acceptor complexes in photosystem II.
    Chu HA; Gardner MT; O'Brien JP; Babcock GT
    Biochemistry; 1999 Apr; 38(14):4533-41. PubMed ID: 10194375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.