These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
568 related articles for article (PubMed ID: 23257394)
81. Development of gynogenetic and parthenogenetic inner cell mass and trophectoderm tissues in reconstituted blastocysts in the mouse. Barton SC; Adams CA; Norris ML; Surani MA J Embryol Exp Morphol; 1985 Dec; 90():267-85. PubMed ID: 3834032 [TBL] [Abstract][Full Text] [Related]
82. Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro. du Puy L; Lopes SM; Haagsman HP; Roelen BA Theriogenology; 2011 Feb; 75(3):513-26. PubMed ID: 21074831 [TBL] [Abstract][Full Text] [Related]
83. Reciprocal regulation of TEAD4 and CCN2 for the trophectoderm development of the bovine blastocyst. Akizawa H; Kobayashi K; Bai H; Takahashi M; Kagawa S; Nagatomo H; Kawahara M Reproduction; 2018 Jun; 155(6):563-571. PubMed ID: 29661794 [TBL] [Abstract][Full Text] [Related]
84. Karyotype of the blastocoel fluid demonstrates low concordance with both trophectoderm and inner cell mass. Tšuiko O; Zhigalina DI; Jatsenko T; Skryabin NA; Kanbekova OR; Artyukhova VG; Svetlakov AV; Teearu K; Trošin A; Salumets A; Kurg A; Lebedev IN Fertil Steril; 2018 Jun; 109(6):1127-1134.e1. PubMed ID: 29935648 [TBL] [Abstract][Full Text] [Related]
85. The Necessity of OCT-4 and CDX2 for Early Development and Gene Expression Involved in Differentiation of Inner Cell Mass and Trophectoderm Lineages in Bovine Embryos. Sakurai N; Takahashi K; Emura N; Fujii T; Hirayama H; Kageyama S; Hashizume T; Sawai K Cell Reprogram; 2016 Oct; 18(5):309-318. PubMed ID: 27500421 [TBL] [Abstract][Full Text] [Related]
86. Whole-blastocyst culture followed by laser drilling technology enhances the efficiency of inner cell mass isolation and embryonic stem cell derivation from good- and poor-quality mouse embryos: new insights for derivation of human embryonic stem cell lines. Cortes JL; Sánchez L; Catalina P; Cobo F; Bueno C; Martínez-Ramirez A; Barroso A; Cabrera C; Ligero G; Montes R; Rubio R; Nieto A; Menendez P Stem Cells Dev; 2008 Apr; 17(2):255-67. PubMed ID: 18447641 [TBL] [Abstract][Full Text] [Related]
87. Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos. Sugimura S; Akai T; Somfai T; Hirayama M; Aikawa Y; Ohtake M; Hattori H; Kobayashi S; Hashiyada Y; Konishi K; Imai K Biol Reprod; 2010 Dec; 83(6):970-8. PubMed ID: 20739661 [TBL] [Abstract][Full Text] [Related]
89. Derivation of Porcine Embryonic Stem-Like Cells from In Vitro-Produced Blastocyst-Stage Embryos. Hou DR; Jin Y; Nie XW; Zhang ML; Ta N; Zhao LH; Yang N; Chen Y; Wu ZQ; Jiang HB; Li YR; Sun QY; Dai YF; Li RF Sci Rep; 2016 May; 6():25838. PubMed ID: 27173828 [TBL] [Abstract][Full Text] [Related]
90. Low-dose irradiation of mouse embryos increases Smad-p21 pathway activity and preserves pluripotency. Hayashi M; Yoshida K; Kitada K; Kizu A; Tachibana D; Fukui M; Morita T; Koyama M J Assist Reprod Genet; 2018 Jun; 35(6):1061-1069. PubMed ID: 29546598 [TBL] [Abstract][Full Text] [Related]
91. The post-inner cell mass intermediate: implications for stem cell biology and assisted reproductive technology. Van der Jeught M; O'Leary T; Duggal G; De Sutter P; Chuva de Sousa Lopes S; Heindryckx B Hum Reprod Update; 2015; 21(5):616-26. PubMed ID: 26089403 [TBL] [Abstract][Full Text] [Related]
93. Regulation of NANOG and SOX2 expression by activin A and a canonical WNT agonist in bovine embryonic stem cells and blastocysts. Xiao Y; Sosa F; Ross PJ; Diffenderfer KE; Hansen PJ Biol Open; 2021 Nov; 10(11):. PubMed ID: 34643229 [TBL] [Abstract][Full Text] [Related]
95. Generation and characterization of embryonic stem-like cell lines derived from in vitro fertilization Buffalo (Bubalus bubalis) embryos. Huang B; Li T; Wang XL; Xie TS; Lu YQ; da Silva FM; Shi DS Reprod Domest Anim; 2010 Feb; 45(1):122-8. PubMed ID: 19144015 [TBL] [Abstract][Full Text] [Related]
96. Oct4 expression in in-vitro-produced sheep blastocysts and embryonic-stem-like cells. Sanna D; Sanna A; Mara L; Pilichi S; Mastinu A; Chessa F; Pani L; Dattena M Cell Biol Int; 2009 Dec; 34(1):53-60. PubMed ID: 19947952 [TBL] [Abstract][Full Text] [Related]
97. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Mitsui K; Tokuzawa Y; Itoh H; Segawa K; Murakami M; Takahashi K; Maruyama M; Maeda M; Yamanaka S Cell; 2003 May; 113(5):631-42. PubMed ID: 12787504 [TBL] [Abstract][Full Text] [Related]
98. Inhibition of RHO-ROCK signaling enhances ICM and suppresses TE characteristics through activation of Hippo signaling in the mouse blastocyst. Kono K; Tamashiro DA; Alarcon VB Dev Biol; 2014 Oct; 394(1):142-55. PubMed ID: 24997360 [TBL] [Abstract][Full Text] [Related]
99. Expression of cell-surface antigens and embryonic stem cell pluripotency genes in equine blastocysts. Guest DJ; Allen WR Stem Cells Dev; 2007 Oct; 16(5):789-96. PubMed ID: 17999600 [TBL] [Abstract][Full Text] [Related]
100. Enhanced generation of human embryonic stem cells from single blastomeres of fair and poor-quality cleavage embryos via inhibition of glycogen synthase kinase β and Rho-associated kinase signaling. Taei A; Hassani SN; Eftekhari-Yazdi P; Rezazadeh Valojerdi M; Nokhbatolfoghahai M; Masoudi NS; Pakzad M; Gourabi H; Baharvand H Hum Reprod; 2013 Oct; 28(10):2661-71. PubMed ID: 23925393 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]