These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 23257885)

  • 21. Crystallographic preferred orientation of akimotoite and seismic anisotropy of Tonga slab.
    Shiraishi R; Ohtani E; Kanagawa K; Shimojuku A; Zhao D
    Nature; 2008 Oct; 455(7213):657-60. PubMed ID: 18833278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of anisotropic structure in the Earth's lower mantle by solid-state convection.
    McNamara AK; van Keken PE; Karato S
    Nature; 2002 Mar; 416(6878):310-4. PubMed ID: 11907574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inherited Heterogeneities Can Control Viscous Subduction Zone Deformation of Carbonates at Seismogenic Depths.
    Leah H; Fagereng Å
    Geophys Res Lett; 2022 Oct; 49(19):e2022GL099358. PubMed ID: 36591572
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dislocation creep in MgSiO3 perovskite at conditions of the Earth's uppermost lower mantle.
    Cordier P; Ungár T; Zsoldos L; Tichy G
    Nature; 2004 Apr; 428(6985):837-40. PubMed ID: 15103372
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anisotropic diffusion creep in postperovskite provides a new model for deformation at the core-mantle boundary.
    Dobson DP; Lindsay-Scott A; Hunt SA; Bailey E; Wood IG; Brodholt JP; Vocadlo L; Wheeler J
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26389-26393. PubMed ID: 31826951
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge.
    Jadamec MA; Billen MI
    Nature; 2010 May; 465(7296):338-41. PubMed ID: 20485433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stagnant forearc mantle wedge inferred from mapping of shear-wave anisotropy using S-net seafloor seismometers.
    Uchida N; Nakajima J; Wang K; Takagi R; Yoshida K; Nakayama T; Hino R; Okada T; Asano Y
    Nat Commun; 2020 Nov; 11(1):5676. PubMed ID: 33173070
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deformation of the lowermost mantle from seismic anisotropy.
    Nowacki A; Wookey J; Kendall JM
    Nature; 2010 Oct; 467(7319):1091-4. PubMed ID: 20981097
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Size effects resolve discrepancies in 40 years of work on low-temperature plasticity in olivine.
    Kumamoto KM; Thom CA; Wallis D; Hansen LN; Armstrong DEJ; Warren JM; Goldsby DL; Wilkinson AJ
    Sci Adv; 2017 Sep; 3(9):e1701338. PubMed ID: 28924611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Grain boundary mobility of carbon in Earth's mantle: a possible carbon flux from the core.
    Hayden LA; Watson EB
    Proc Natl Acad Sci U S A; 2008 Jun; 105(25):8537-41. PubMed ID: 18559860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Redox-influenced seismic properties of upper-mantle olivine.
    Cline Ii CJ; Faul UH; David EC; Berry AJ; Jackson I
    Nature; 2018 Mar; 555(7696):355-358. PubMed ID: 29542688
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Grain boundaries as reservoirs of incompatible elements in the Earth's mantle.
    Hiraga T; Anderson IM; Kohlstedt DL
    Nature; 2004 Feb; 427(6976):699-703. PubMed ID: 14973476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rheology of Naturally Deformed Antigorite Serpentinite: Strain and Strain-Rate Dependence at Mantle-Wedge Conditions.
    Tulley CJ; Fagereng Å; Ujiie K; Piazolo S; Tarling MS; Mori Y
    Geophys Res Lett; 2022 Aug; 49(16):e2022GL098945. PubMed ID: 36249466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modelling the rheology of MgO under Earth's mantle pressure, temperature and strain rates.
    Cordier P; Amodeo J; Carrez P
    Nature; 2012 Jan; 481(7380):177-80. PubMed ID: 22237109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite.
    Tsujino N; Nishihara Y; Yamazaki D; Seto Y; Higo Y; Takahashi E
    Nature; 2016 Nov; 539(7627):81-84. PubMed ID: 27750277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-resolution seismic constraints on flow dynamics in the oceanic asthenosphere.
    Lin PY; Gaherty JB; Jin G; Collins JA; Lizarralde D; Evans RL; Hirth G
    Nature; 2016 Jul; 535(7613):538-41. PubMed ID: 27383792
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the Relationship Between Oceanic Plate Speed, Tectonic Stress, and Seismic Anisotropy.
    Kendall E; Faccenda M; Ferreira AMG; Chang SJ
    Geophys Res Lett; 2022 Aug; 49(15):e2022GL097795. PubMed ID: 36247518
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Natural examples of olivine lattice preferred orientation patterns with a flow-normal a-axis maximum.
    Mizukami T; Wallis SR; Yamamoto J
    Nature; 2004 Jan; 427(6973):432-6. PubMed ID: 14749828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Viscosity of bridgmanite determined by in situ stress and strain measurements in uniaxial deformation experiments.
    Tsujino N; Yamazaki D; Nishihara Y; Yoshino T; Higo Y; Tange Y
    Sci Adv; 2022 Apr; 8(13):eabm1821. PubMed ID: 35353572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seismic evidence for widespread western-US deep-crustal deformation caused by extension.
    Moschetti MP; Ritzwoller MH; Lin F; Yang Y
    Nature; 2010 Apr; 464(7290):885-9. PubMed ID: 20376148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.