These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 23258003)

  • 1. Photonic millimeter-wave frequency multiplication based on cascaded four-wave mixing and polarization pulling.
    Vidal B
    Opt Lett; 2012 Dec; 37(24):5055-7. PubMed ID: 23258003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonic-assisted microwave frequency multiplication with a tunable multiplication factor.
    Gao L; Liu W; Chen X; Yao J
    Opt Lett; 2013 Nov; 38(21):4487-90. PubMed ID: 24177126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Widely tunable single bandpass microwave photonic filter based on Brillouin-assisted optical carrier recovery.
    Wang WT; Liu JG; Sun WH; Wang WY; Wang SL; Zhu NH
    Opt Express; 2014 Dec; 22(24):29304-13. PubMed ID: 25606864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing.
    Supradeepa VR; Weiner AM
    Opt Lett; 2012 Aug; 37(15):3066-8. PubMed ID: 22859087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Millimeter wave carrier generation based on a double-Brillouin-frequency spaced fiber laser.
    Shee YG; Al-Mansoori MH; Yaakob S; Man A; Zamzuri AK; Adikan FR; Mahdi MA
    Opt Express; 2012 Jun; 20(12):13402-8. PubMed ID: 22714367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switchable and tunable microwave frequency multiplication based on a dual-passband microwave photonic filter.
    Chen H; Xu Z; Fu H; Zhang S; Wu C; Wu H; Xu H; Cai Z
    Opt Express; 2015 Apr; 23(8):9835-43. PubMed ID: 25969024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proposal for all-optical generation of multiple-frequency millimeter-wave signals for RoF system with multiple base stations using FWM in SOA.
    Zhang C; Wang L; Qiu K
    Opt Express; 2011 Jul; 19(15):13957-62. PubMed ID: 21934756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High conversion efficiency microwave photonic mixer based on stimulated Brillouin scattering carrier suppression technique.
    Chan EH; Minasian RA
    Opt Lett; 2013 Dec; 38(24):5292-5. PubMed ID: 24322240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simplified optical millimeter-wave generation configuration by frequency quadrupling using two cascaded Mach-Zehnder modulators.
    Zhao Y; Zheng X; Wen H; Zhang H
    Opt Lett; 2009 Nov; 34(21):3250-2. PubMed ID: 19881557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic vector signal generation at microwave/millimeter-wave bands employing an optical frequency quadrupling scheme.
    Lin CT; Shih PT; Jiang WJ; Wong EZ; Chen JJ; Chi S
    Opt Lett; 2009 Jul; 34(14):2171-3. PubMed ID: 19823538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photonic generation of millimeter-wave and multi-waveform signals based on external modulation and polarization control.
    Yuan J; Zhang M; Mei Y; Liu Q; Liu J
    Appl Opt; 2022 Oct; 61(30):8967-8973. PubMed ID: 36607024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering.
    Wise A; Tur M; Zadok A
    Opt Express; 2011 Oct; 19(22):21945-55. PubMed ID: 22109047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An ultrawide tunable range single passband microwave photonic filter based on stimulated Brillouin scattering.
    Xiao Y; Guo J; Wu K; Qu P; Qi H; Liu C; Ruan S; Chen W; Dong W
    Opt Express; 2013 Feb; 21(3):2718-26. PubMed ID: 23481728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Filterless frequency 12-tupling optical millimeter-wave generation using two cascaded dual-parallel Mach-Zehnder modulators.
    Zhu Z; Zhao S; Zheng W; Wang W; Lin B
    Appl Opt; 2015 Nov; 54(32):9432-40. PubMed ID: 26560769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of optical-beat frequency in a photoconductive terahertz-wave generator using microwave higher harmonics.
    Murasawa K; Sato K; Hidaka T
    Rev Sci Instrum; 2011 May; 82(5):053104. PubMed ID: 21639489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic generation of a millimeter-wave signal based on sextuple-frequency multiplication.
    Zhang J; Chen H; Chen M; Wang T; Xie S
    Opt Lett; 2007 May; 32(9):1020-2. PubMed ID: 17410221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization-insensitive wavelength-division-multiplexing optical millimeter wave generation based on copolarized pump four wave mixing in a semiconductor optical amplifier.
    Li Y; Zheng Z; Chen L; Wen S; Fan D
    Appl Opt; 2009 Jun; 48(16):3008-13. PubMed ID: 19488112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photonic generation of high frequency millimeter-wave and transmission over optical fiber.
    Kumar A; Priye V
    Appl Opt; 2016 Aug; 55(22):5830-9. PubMed ID: 27505360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optically tunable microwave, millimeter-wave and submillimeter-wave utilizing single-mode Fabry-PĂ©rot laser diode subject to optical feedback.
    Wu JW; Nakarmi B; Won YH
    Opt Express; 2016 Feb; 24(3):2655-63. PubMed ID: 26906837
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harmonic signal generation and frequency upconversion using selective sideband Brillouin amplification in single-mode fiber.
    Lee KH; Choi WY
    Opt Lett; 2007 Jun; 32(12):1686-8. PubMed ID: 17572747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.