These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 232581)

  • 1. Oscillatory potentials in the electroretinogram.
    Levett J; McAvinn JD
    TIT J Life Sci; 1979; 9(1-2):19-27. PubMed ID: 232581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium release in the frog retina and the origin of the b-wave of the electroretinogram [proceedings].
    Green DG; Oakley B
    Arzneimittelforschung; 1978; 28(5):873. PubMed ID: 312107
    [No Abstract]   [Full Text] [Related]  

  • 3. Neuronal adaptation in the human retina: a study of the single oscillatory response in dark adaptation and mesopic background illumination.
    Lundström AL; Wang L; Wachtmeister L
    Acta Ophthalmol Scand; 2007 Nov; 85(7):756-63. PubMed ID: 17488317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The behavior of the b-wave in the electroretinogram of light-adapted frogs during serial light exposure].
    Gneupel U; Güther HJ; Zaumseil J; Reim G; Berger H
    Acta Biol Med Ger; 1975; 34(5):849-55. PubMed ID: 1199605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Behavior of the b-wave in the electroretinogram of the frog under the effect of serial light flashes of varying intensity].
    Berger H; Ekué F
    Acta Biol Med Ger; 1970; 25(4):583-91. PubMed ID: 5518790
    [No Abstract]   [Full Text] [Related]  

  • 6. [Influence of temperature on the behavior of b-wave in the electroretinogram of dark adapted frogs exposed to serial flash stimulation].
    Berger H; Werner H
    Acta Biol Med Ger; 1970; 25(5):837-45. PubMed ID: 5523716
    [No Abstract]   [Full Text] [Related]  

  • 7. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram.
    Oakley B; Green DG
    J Neurophysiol; 1976 Sep; 39(5):1117-33. PubMed ID: 1086346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The isolated perfused bovine retina--a sensitive tool for pharmacological research on retinal function.
    Lüke M; Weiergräber M; Brand C; Siapich SA; Banat M; Hescheler J; Lüke C; Schneider T
    Brain Res Brain Res Protoc; 2005 Dec; 16(1-3):27-36. PubMed ID: 16275053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origins of the electroretinogram oscillatory potentials in the rabbit retina.
    Dong CJ; Agey P; Hare WA
    Vis Neurosci; 2004; 21(4):533-43. PubMed ID: 15579219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light exposure can reduce selectively or abolish the C-wave of the albino rat electroretinogram.
    Graves AL; Green DG; Fisher LJ
    Invest Ophthalmol Vis Sci; 1985 Mar; 26(3):388-93. PubMed ID: 3972521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laminar separation of light-evoked K+ flux and field potentials in frog retina.
    Karwoski J; Criswell MH; Proenza LM
    Invest Ophthalmol Vis Sci; 1978 Jul; 17(7):678-82. PubMed ID: 669896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparative studies of the electroretinogram during dark flashes of the isolated frog retina and of the frog in situ].
    Kühnel P; Hanitzsch R
    Acta Biol Med Ger; 1972; 28(2):341-8. PubMed ID: 4538228
    [No Abstract]   [Full Text] [Related]  

  • 13. The in vitro frog pigment epithelial cell hyperpolarization in response to light.
    Oakley B; Steinberg RH; Miller SS; Nilsson SE
    Invest Ophthalmol Vis Sci; 1977 Aug; 16(8):771-4. PubMed ID: 885686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dopaminergic modulation and rod contribution in the generation of oscillatory potentials in the tiger salamander retina.
    Perry B; George JS
    Vision Res; 2007 Feb; 47(3):309-14. PubMed ID: 17184809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The electroretinogram: its components and their origins.
    Brown KT
    UCLA Forum Med Sci; 1969; 8():319-78. PubMed ID: 4990860
    [No Abstract]   [Full Text] [Related]  

  • 16. Electroretinography of wild-type and Cry mutant mice reveals circadian tuning of photopic and mesopic retinal responses.
    Cameron MA; Barnard AR; Hut RA; Bonnefont X; van der Horst GT; Hankins MW; Lucas RJ
    J Biol Rhythms; 2008 Dec; 23(6):489-501. PubMed ID: 19060258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Luminosity functions of human electroretinogram wavelets evoked with pattern-reversal stimuli.
    Korth M
    Invest Ophthalmol Vis Sci; 1980 Jul; 19(7):810-6. PubMed ID: 7390728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Slow P III component of the electroretinogram resulting from the interaction of photoreceptors and cells of Müller in the retina].
    Dmitriev AV; Bykov KA; Skachkov SN
    Fiziol Zh SSSR Im I M Sechenova; 1985 Apr; 71(4):446-52. PubMed ID: 3873364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of adaptation on DC-component of human electroretinogram.
    Li XX; Foerster MH
    Chin Med J (Engl); 1989 Oct; 102(10):800-5. PubMed ID: 2517061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attenuating effects of diazepam on the electroretinogram of normal humans.
    Jaffe MJ; Hommer DW; Caruso RC; Straw GM; de Monasterio FM
    Retina; 1989; 9(3):216-25. PubMed ID: 2595115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.