These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 23258549)

  • 41. Two-component, ab initio potential energy surface for CO
    Wang QK; Bowman JM
    J Chem Phys; 2017 Oct; 147(16):161714. PubMed ID: 29096492
    [TBL] [Abstract][Full Text] [Related]  

  • 42. IR Spectra of (HCOOH)
    Qu C; Bowman JM
    J Phys Chem Lett; 2018 May; 9(10):2604-2610. PubMed ID: 29709189
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigating the calculation of anharmonic vibrational frequencies using force fields derived from density functional theory.
    Hanson-Heine MW; George MW; Besley NA
    J Phys Chem A; 2012 May; 116(17):4417-25. PubMed ID: 22483009
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The electronic spectrum of CUONg4 (Ng = Ne, Ar, Kr, Xe): new insights in the interaction of the CUO molecule with noble gas matrices.
    Tecmer P; van Lingen H; Gomes AS; Visscher L
    J Chem Phys; 2012 Aug; 137(8):084308. PubMed ID: 22938234
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Potential energy surfaces and dynamic properties via ab initio composite and density functional approaches.
    Patel P; Chung J; Bowman MA; Ulusoy I; Wilson AK
    J Comput Chem; 2024 Jun; 45(16):1352-1363. PubMed ID: 38376255
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Calculation of Anharmonic IR and Raman Intensities for Periodic Systems from DFT Calculations: Implementation and Validation.
    Carbonnière P; Erba A; Richter F; Dovesi R; Rerat M
    J Chem Theory Comput; 2020 May; 16(5):3343-3351. PubMed ID: 32275427
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Detection and determination of the {Fe(NO)(2)} core vibrational features in dinitrosyl-iron complexes from experiment, normal coordinate analysis, and density functional theory: an avenue for probing the nitric oxide oxidation state.
    Dai RJ; Ke SC
    J Phys Chem B; 2007 Mar; 111(9):2335-46. PubMed ID: 17295535
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Towards fast computations of correlated vibrational wave functions: vibrational coupled cluster response excitation energies at the two-mode coupling level.
    Seidler P; Hansen MB; Christiansen O
    J Chem Phys; 2008 Apr; 128(15):154113. PubMed ID: 18433196
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Decomposing anharmonicity and mode-coupling from matrix effects in the IR spectra of matrix-isolated carbon dioxide and methane.
    Dinu DF; Podewitz M; Grothe H; Loerting T; Liedl KR
    Phys Chem Chem Phys; 2020 Aug; 22(32):17932-17947. PubMed ID: 32744540
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fast degenerate correlation-corrected vibrational self-consistent field calculations of the vibrational spectrum of 4-mercaptopyridine.
    Respondek I; Benoit DM
    J Chem Phys; 2009 Aug; 131(5):054109. PubMed ID: 19673553
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The nature and role of the gold-krypton interactions in small neutral gold clusters.
    Mancera LA; Benoit DM
    J Phys Chem A; 2015 Mar; 119(12):3075-88. PubMed ID: 25742369
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anharmonic vibrational spectroscopy calculations for (NH3)(HF) and (NH3)(DF): fundamental, overtone, and combination transitions.
    Brindle CA; Chaban GM; Gerber RB; Janda KC
    Phys Chem Chem Phys; 2005 Mar; 7(5):945-54. PubMed ID: 19791384
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of nuclear quantum effects on the molecular structure of bihalides and the hydrogen fluoride dimer.
    Swalina C; Hammes-Schiffer S
    J Phys Chem A; 2005 Nov; 109(45):10410-7. PubMed ID: 16833338
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Anharmonic Coupling of Stretching Vibrations in Ice: A Periodic VSCF and VCI Description.
    Schireman RG; Maul J; Erba A; Ruggiero MT
    J Chem Theory Comput; 2022 Jul; 18(7):4428-4437. PubMed ID: 35737003
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Predicting accurate vibrational frequencies for highly anharmonic systems.
    Njegic B; Gordon MS
    J Chem Phys; 2008 Oct; 129(16):164107. PubMed ID: 19045247
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anharmonicity of Vibrational Modes in Hydrogen Chloride-Water Mixtures.
    Perlt E; Berger SA; Kelterer AM; Kirchner B
    J Chem Theory Comput; 2019 Apr; 15(4):2535-2547. PubMed ID: 30811198
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Anharmonic overtone and combination states of glycine and two model peptides examined by vibrational self-consistent field theory.
    Meng K; Wang J
    Phys Chem Chem Phys; 2011 Feb; 13(6):2001-13. PubMed ID: 21173967
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computational vibrational spectroscopy of peptides and proteins in one and two dimensions.
    Jeon J; Yang S; Choi JH; Cho M
    Acc Chem Res; 2009 Sep; 42(9):1280-9. PubMed ID: 19456096
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimal internal coordinates, vibrational spectrum, and effective Hamiltonian for ozone.
    Zúñiga J; Picón JA; Bastida A; Requena A
    J Chem Phys; 2007 Jun; 126(24):244305. PubMed ID: 17614547
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Solving the puzzle of the carbonic acid vibrational spectrum - An anharmonic story.
    Schlagin J; Dinu DF; Bernard J; Loerting T; Grothe H; Liedl K
    Chemphyschem; 2024 Jul; ():e202400274. PubMed ID: 39031477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.