These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 23258558)

  • 1. Development of innovative biopolymers and related composites for bone tissue regeneration: study of their interaction with human osteoprogenitor cells.
    Basile MA; d'Ayala GG; Laurienzo P; Malinconico M; Della Ragione F; Oliva A
    J Appl Biomater Funct Mater; 2012; 10(3):210-4. PubMed ID: 23258558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalized PCL/HA nanocomposites as microporous membranes for bone regeneration.
    Basile MA; d'Ayala GG; Malinconico M; Laurienzo P; Coudane J; Nottelet B; Ragione FD; Oliva A
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():457-68. PubMed ID: 25579947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injectable Chitin-Poly(ε-caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering.
    Arun Kumar R; Sivashanmugam A; Deepthi S; Iseki S; Chennazhi KP; Nair SV; Jayakumar R
    ACS Appl Mater Interfaces; 2015 May; 7(18):9399-409. PubMed ID: 25893690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly-ε-caprolactone composite scaffolds for bone repair.
    Di Liddo R; Paganin P; Lora S; Dalzoppo D; Giraudo C; Miotto D; Tasso A; Barbon S; Artico M; Bianchi E; Parnigotto PP; Conconi MT; Grandi C
    Int J Mol Med; 2014 Dec; 34(6):1537-46. PubMed ID: 25319350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N; Pavasant P; Supaphol P
    J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological behavior of mesenchymal stem cells on poly-ε-caprolactone filaments and a strategy for tissue engineering of segments of the peripheral nerves.
    Carrier-Ruiz A; Evaristo-Mendonça F; Mendez-Otero R; Ribeiro-Resende VT
    Stem Cell Res Ther; 2015 Jul; 6(1):128. PubMed ID: 26149068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrosprayed hydroxyapatite on polymer nanofibers to differentiate mesenchymal stem cells to osteogenesis.
    Venugopal J; Rajeswari R; Shayanti M; Low S; Bongso A; Dev VR; Deepika G; Choon AT; Ramakrishna S
    J Biomater Sci Polym Ed; 2013; 24(2):170-84. PubMed ID: 22370175
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.
    Ambre AH; Katti DR; Katti KS
    J Biomed Mater Res A; 2015 Jun; 103(6):2077-101. PubMed ID: 25331212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Employing the cyclophosphate to accelerate the degradation of nano-hydroxyapatite/poly(amino acid) (n-HA/PAA) composite materials.
    Jing L; Chen L; Peng H; Ji M; Xiong Y; Lv G
    J Biomater Sci Polym Ed; 2017 Dec; 28(18):2154-2170. PubMed ID: 28950766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PCL-HA microscaffolds for in vitro modular bone tissue engineering.
    Totaro A; Salerno A; Imparato G; Domingo C; Urciuolo F; Netti PA
    J Tissue Eng Regen Med; 2017 Jun; 11(6):1865-1875. PubMed ID: 28586547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds.
    Koupaei N; Karkhaneh A; Daliri Joupari M
    J Biomed Mater Res A; 2015 Dec; 103(12):3919-26. PubMed ID: 26015080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly-epsilon-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and human osteoblast response.
    Causa F; Netti PA; Ambrosio L; Ciapetti G; Baldini N; Pagani S; Martini D; Giunti A
    J Biomed Mater Res A; 2006 Jan; 76(1):151-62. PubMed ID: 16258959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering.
    Gao X; Song J; Ji P; Zhang X; Li X; Xu X; Wang M; Zhang S; Deng Y; Deng F; Wei S
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3499-515. PubMed ID: 26756224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of Poly(ε-caprolactone) and bio-interactions with mouse bone marrow mesenchymal stem cells.
    V S S; P V M
    Colloids Surf B Biointerfaces; 2018 Mar; 163():107-118. PubMed ID: 29287231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, characterization and osteoconductivity properties of bone fillers based on alendronate-loaded poly(ε-caprolactone)/hydroxyapatite microspheres.
    Chen J; Luo Y; Hong L; Ling Y; Pang J; Fang Y; Wei K; Gao X
    J Mater Sci Mater Med; 2011 Mar; 22(3):547-55. PubMed ID: 21318627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of hydroxyapatite as solid signal on performance of PCL porous scaffolds for bone tissue regeneration.
    Guarino V; Causa F; Netti PA; Ciapetti G; Pagani S; Martini D; Baldini N; Ambrosio L
    J Biomed Mater Res B Appl Biomater; 2008 Aug; 86(2):548-57. PubMed ID: 18335435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering.
    Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic dispensing of composite scaffolds and in vitro responses of bone marrow stromal cells.
    Hong SJ; Jeong I; Noh KT; Yu HS; Lee GS; Kim HW
    J Mater Sci Mater Med; 2009 Sep; 20(9):1955-62. PubMed ID: 19365613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro characterization of polyesters of aconitic acid, glycerol, and cinnamic acid for bone tissue engineering.
    Kanitkar A; Chen C; Smoak M; Hogan K; Scherr T; Aita G; Hayes D
    J Biomater Appl; 2015 Mar; 29(8):1075-85. PubMed ID: 25281649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.