These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 23258757)
1. Recovery of urinary nanovesicles from ultracentrifugation supernatants. Musante L; Saraswat M; Ravidà A; Byrne B; Holthofer H Nephrol Dial Transplant; 2013 Jun; 28(6):1425-33. PubMed ID: 23258757 [TBL] [Abstract][Full Text] [Related]
2. Residual urinary extracellular vesicles in ultracentrifugation supernatants after hydrostatic filtration dialysis enrichment. Musante L; Tataruch-Weinert D; Kerjaschki D; Henry M; Meleady P; Holthofer H J Extracell Vesicles; 2017; 6(1):1267896. PubMed ID: 28326167 [TBL] [Abstract][Full Text] [Related]
3. Isolation of urinary exosomes for RNA biomarker discovery using a simple, fast, and highly scalable method. Alvarez ML Methods Mol Biol; 2014; 1182():145-70. PubMed ID: 25055908 [TBL] [Abstract][Full Text] [Related]
4. Rigorous characterization of urinary extracellular vesicles (uEVs) in the low centrifugation pellet - a neglected source for uEVs. Musante L; Bontha SV; La Salvia S; Fernandez-Piñeros A; Lannigan J; Le TH; Mas V; Erdbrügger U Sci Rep; 2020 Feb; 10(1):3701. PubMed ID: 32111925 [TBL] [Abstract][Full Text] [Related]
5. RNA-containing exosomes in human nasal secretions. Lässer C; O'Neil SE; Ekerljung L; Ekström K; Sjöstrand M; Lötvall J Am J Rhinol Allergy; 2011; 25(2):89-93. PubMed ID: 21172122 [TBL] [Abstract][Full Text] [Related]
6. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. Cvjetkovic A; Lötvall J; Lässer C J Extracell Vesicles; 2014; 3():. PubMed ID: 24678386 [TBL] [Abstract][Full Text] [Related]
7. Isolation and purification of exosomes in urine. Gonzales PA; Zhou H; Pisitkun T; Wang NS; Star RA; Knepper MA; Yuen PS Methods Mol Biol; 2010; 641():89-99. PubMed ID: 20407943 [TBL] [Abstract][Full Text] [Related]
8. Podocyte membrane vesicles in urine originate from tip vesiculation of podocyte microvilli. Hara M; Yanagihara T; Hirayama Y; Ogasawara S; Kurosawa H; Sekine S; Kihara I Hum Pathol; 2010 Sep; 41(9):1265-75. PubMed ID: 20447677 [TBL] [Abstract][Full Text] [Related]
10. A highly efficient method for isolating urinary exosomes. He L; Zhu D; Wang J; Wu X Int J Mol Med; 2019 Jan; 43(1):83-90. PubMed ID: 30365060 [TBL] [Abstract][Full Text] [Related]
11. A simplified method to recover urinary vesicles for clinical applications, and sample banking. Musante L; Tataruch D; Gu D; Benito-Martin A; Calzaferri G; Aherne S; Holthofer H Sci Rep; 2014 Dec; 4():7532. PubMed ID: 25532487 [TBL] [Abstract][Full Text] [Related]
12. Biochemical and physical characterisation of urinary nanovesicles following CHAPS treatment. Musante L; Saraswat M; Duriez E; Byrne B; Ravidà A; Domon B; Holthofer H PLoS One; 2012; 7(7):e37279. PubMed ID: 22808001 [TBL] [Abstract][Full Text] [Related]
13. A comparative analysis of strategies for isolation of matrix vesicles. Balcerzak M; Radisson J; Azzar G; Farlay D; Boivin G; Pikula S; Buchet R Anal Biochem; 2007 Feb; 361(2):176-82. PubMed ID: 17194438 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of urinary exosomes in cardiovascular and associated kidney diseases by two-dimensional electrophoresis and LC-MS/MS. Zubiri I; Vivanco F; Alvarez-Llamas G Methods Mol Biol; 2013; 1000():209-20. PubMed ID: 23585095 [TBL] [Abstract][Full Text] [Related]
15. Enrichment of calcifying extracellular vesicles using density-based ultracentrifugation protocol. Hutcheson JD; Goettsch C; Pham T; Iwashita M; Aikawa M; Singh SA; Aikawa E J Extracell Vesicles; 2014; 3():25129. PubMed ID: 25491249 [TBL] [Abstract][Full Text] [Related]
16. Exosomes: a common pathway for a specialized function. van Niel G; Porto-Carreiro I; Simoes S; Raposo G J Biochem; 2006 Jul; 140(1):13-21. PubMed ID: 16877764 [TBL] [Abstract][Full Text] [Related]
17. Isolation of extracellular membranous vesicles for proteomic analysis. Mathias RA; Lim JW; Ji H; Simpson RJ Methods Mol Biol; 2009; 528():227-42. PubMed ID: 19153696 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of the Golgi apparatus of a flagellate scaly green alga. Grunow A; Becker B; Melkonian M Eur J Cell Biol; 1993 Jun; 61(1):10-20. PubMed ID: 8223693 [TBL] [Abstract][Full Text] [Related]
19. Optimization of urinary small extracellular vesicle isolation protocols: implications in early diagnosis, stratification, treatment and prognosis of diseases in the era of personalized medicine. Chen QG; Chen L; Zhong QH; Zhang L; Jiang YH; Li SQ; Qin TY; Sun F; You XH; Yang WM; Huang B; Wang XZ Am J Transl Res; 2020; 12(10):6302-6313. PubMed ID: 33194031 [TBL] [Abstract][Full Text] [Related]
20. The cytoarchitecture, cytology, and synaptic organization of the basilar pontine nuclei in the rat. II. Electron microscopic studies. Mihailoff GA; McArdle CB J Comp Neurol; 1981 Jan; 195(2):203-19. PubMed ID: 7251924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]