These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 23258841)

  • 1. Chlorophyll biosynthesis gene evolution indicates photosystem gene duplication, not photosystem merger, at the origin of oxygenic photosynthesis.
    Sousa FL; Shavit-Grievink L; Allen JF; Martin WF
    Genome Biol Evol; 2013; 5(1):200-16. PubMed ID: 23258841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved comparative molecular evolution of oxygenic photosynthesis.
    Oliver T; Sánchez-Baracaldo P; Larkum AW; Rutherford AW; Cardona T
    Biochim Biophys Acta Bioenerg; 2021 Jun; 1862(6):148400. PubMed ID: 33617856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The trouble with oxygen: The ecophysiology of extant phototrophs and implications for the evolution of oxygenic photosynthesis.
    Hamilton TL
    Free Radic Biol Med; 2019 Aug; 140():233-249. PubMed ID: 31078729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins.
    Gupta RS
    Mol Biol Evol; 2012 Nov; 29(11):3397-412. PubMed ID: 22628531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early Archean origin of Photosystem II.
    Cardona T; Sánchez-Baracaldo P; Rutherford AW; Larkum AW
    Geobiology; 2019 Mar; 17(2):127-150. PubMed ID: 30411862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular evidence for the early evolution of photosynthesis.
    Xiong J; Fischer WM; Inoue K; Nakahara M; Bauer CE
    Science; 2000 Sep; 289(5485):1724-30. PubMed ID: 10976061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolutionary pathway from anoxygenic to oxygenic photosynthesis examined by comparison of the properties of photosystem II and bacterial reaction centers.
    Allen JP; Williams JC
    Photosynth Res; 2011 Jan; 107(1):59-69. PubMed ID: 20449659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis.
    Xiong J; Inoue K; Bauer CE
    Proc Natl Acad Sci U S A; 1998 Dec; 95(25):14851-6. PubMed ID: 9843979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Granick revisited: Synthesizing evolutionary and ecological evidence for the late origin of bacteriochlorophyll via ghost lineages and horizontal gene transfer.
    Ward LM; Shih PM
    PLoS One; 2021; 16(1):e0239248. PubMed ID: 33507911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Daddy, where did (PS)I come from?
    Baymann F; Brugna M; Mühlenhoff U; Nitschke W
    Biochim Biophys Acta; 2001 Oct; 1507(1-3):291-310. PubMed ID: 11687221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosynthesis of Chlorophyll a in a Purple Bacterial Phototroph and Assembly into a Plant Chlorophyll-Protein Complex.
    Hitchcock A; Jackson PJ; Chidgey JW; Dickman MJ; Hunter CN; Canniffe DP
    ACS Synth Biol; 2016 Sep; 5(9):948-54. PubMed ID: 27171912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin and Evolution of Water Oxidation before the Last Common Ancestor of the Cyanobacteria.
    Cardona T; Murray JW; Rutherford AW
    Mol Biol Evol; 2015 May; 32(5):1310-28. PubMed ID: 25657330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of an oxygenic reaction center psbADC operon in the cyanobacterium Gloeobacter violaceus PCC 7421.
    Nguyen TA; Brescic J; Vinyard DJ; Chandrasekar T; Dismukes GC
    Mol Biol Evol; 2012 Jan; 29(1):35-8. PubMed ID: 21903678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The diversity and distribution of D1 proteins in cyanobacteria.
    Sheridan KJ; Duncan EJ; Eaton-Rye JJ; Summerfield TC
    Photosynth Res; 2020 Aug; 145(2):111-128. PubMed ID: 32556852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light.
    Gan F; Zhang S; Rockwell NC; Martin SS; Lagarias JC; Bryant DA
    Science; 2014 Sep; 345(6202):1312-7. PubMed ID: 25214622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anoxygenic phototroph of the Chloroflexota uses a type I reaction centre.
    Tsuji JM; Shaw NA; Nagashima S; Venkiteswaran JJ; Schiff SL; Watanabe T; Fukui M; Hanada S; Tank M; Neufeld JD
    Nature; 2024 Mar; 627(8005):915-922. PubMed ID: 38480893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ycf48 involved in the biogenesis of the oxygen-evolving photosystem II complex is a seven-bladed beta-propeller protein.
    Yu J; Knoppová J; Michoux F; Bialek W; Cota E; Shukla MK; Strašková A; Pascual Aznar G; Sobotka R; Komenda J; Murray JW; Nixon PJ
    Proc Natl Acad Sci U S A; 2018 Aug; 115(33):E7824-E7833. PubMed ID: 30061392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the origin of oxygenic photosynthesis and Cyanobacteria.
    Sánchez-Baracaldo P; Cardona T
    New Phytol; 2020 Feb; 225(4):1440-1446. PubMed ID: 31598981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificially acquired chlorophyll b is highly acceptable to the thylakoid-lacking cyanobacterium, Gloeobacter violaceus PCC 7421.
    Araki M; Akimoto S; Mimuro M; Tsuchiya T
    Plant Physiol Biochem; 2014 Aug; 81():155-62. PubMed ID: 24508456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Evolution and Evolvability of Photosystem II.
    Oliver T; Kim TD; Trinugroho JP; Cordón-Preciado V; Wijayatilake N; Bhatia A; Rutherford AW; Cardona T
    Annu Rev Plant Biol; 2023 May; 74():225-257. PubMed ID: 36889003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.