BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23259034)

  • 1. Classification of H₂O₂as a neuromodulator that regulates striatal dopamine release on a subsecond time scale.
    Patel JC; Rice ME
    ACS Chem Neurosci; 2012 Dec; 3(12):991-1001. PubMed ID: 23259034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subsecond regulation of striatal dopamine release by pre-synaptic KATP channels.
    Patel JC; Witkovsky P; Coetzee WA; Rice ME
    J Neurochem; 2011 Sep; 118(5):721-36. PubMed ID: 21689107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMPA receptor-dependent H2O2 generation in striatal medium spiny neurons but not dopamine axons: one source of a retrograde signal that can inhibit dopamine release.
    Avshalumov MV; Patel JC; Rice ME
    J Neurophysiol; 2008 Sep; 100(3):1590-601. PubMed ID: 18632893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate-dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2.
    Avshalumov MV; Chen BT; Marshall SP; Peña DM; Rice ME
    J Neurosci; 2003 Apr; 23(7):2744-50. PubMed ID: 12684460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of striatal dopamine release by CB1 receptor activation requires nonsynaptic communication involving GABA, H2O2, and KATP channels.
    Sidló Z; Reggio PH; Rice ME
    Neurochem Int; 2008 Jan; 52(1-2):80-8. PubMed ID: 17767979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion.
    Bao L; Avshalumov MV; Rice ME
    J Neurosci; 2005 Oct; 25(43):10029-40. PubMed ID: 16251452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of ATP-sensitive K+ (K(ATP)) channels by H2O2 underlies glutamate-dependent inhibition of striatal dopamine release.
    Avshalumov MV; Rice ME
    Proc Natl Acad Sci U S A; 2003 Sep; 100(20):11729-34. PubMed ID: 13679582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensing Positive versus Negative Reward Signals through Adenylyl Cyclase-Coupled GPCRs in Direct and Indirect Pathway Striatal Medium Spiny Neurons.
    Nair AG; Gutierrez-Arenas O; Eriksson O; Vincent P; Hellgren Kotaleski J
    J Neurosci; 2015 Oct; 35(41):14017-30. PubMed ID: 26468202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H2O2: a dynamic neuromodulator.
    Rice ME
    Neuroscientist; 2011 Aug; 17(4):389-406. PubMed ID: 21666063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of Nigrostriatal Dopamine Release by Striatal GABA
    Lopes EF; Roberts BM; Siddorn RE; Clements MA; Cragg SJ
    J Neurosci; 2019 Feb; 39(6):1058-1065. PubMed ID: 30541909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homeostatic regulation of excitatory synapses on striatal medium spiny neurons expressing the D2 dopamine receptor.
    Thibault D; Giguère N; Loustalot F; Bourque MJ; Ducrot C; El Mestikawy S; Trudeau LÉ
    Brain Struct Funct; 2016 May; 221(4):2093-107. PubMed ID: 25782435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of Optically and Electrically Evoked Dopamine Release in Striatal Slices from Digenic Knock-in Mice with DAT-Driven Expression of Channelrhodopsin.
    O'Neill B; Patel JC; Rice ME
    ACS Chem Neurosci; 2017 Feb; 8(2):310-319. PubMed ID: 28177213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of somatodendritic dopamine release by endogenous H(2)O(2): susceptibility in substantia nigra but resistance in VTA.
    Chen BT; Avshalumov MV; Rice ME
    J Neurophysiol; 2002 Feb; 87(2):1155-8. PubMed ID: 11826083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. H(2)O(2) is a novel, endogenous modulator of synaptic dopamine release.
    Chen BT; Avshalumov MV; Rice ME
    J Neurophysiol; 2001 Jun; 85(6):2468-76. PubMed ID: 11387393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitochondria are the source of hydrogen peroxide for dynamic brain-cell signaling.
    Bao L; Avshalumov MV; Patel JC; Lee CR; Miller EW; Chang CJ; Rice ME
    J Neurosci; 2009 Jul; 29(28):9002-10. PubMed ID: 19605638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopaminergic treatment weakens medium spiny neuron collateral inhibition in the parkinsonian striatum.
    Wei W; Ding S; Zhou FM
    J Neurophysiol; 2017 Mar; 117(3):987-999. PubMed ID: 27927785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limited regulation of somatodendritic dopamine release by voltage-sensitive Ca channels contrasted with strong regulation of axonal dopamine release.
    Chen BT; Moran KA; Avshalumov MV; Rice ME
    J Neurochem; 2006 Feb; 96(3):645-55. PubMed ID: 16405515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are striatal tyrosine hydroxylase interneurons dopaminergic?
    Xenias HS; Ibáñez-Sandoval O; Koós T; Tepper JM
    J Neurosci; 2015 Apr; 35(16):6584-99. PubMed ID: 25904808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine Release Neuroenergetics in Mouse Striatal Slices.
    Msackyi M; Chen Y; Tsering W; Wang N; Zhang H
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38731799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segregation of dopamine and glutamate release sites in dopamine neuron axons: regulation by striatal target cells.
    Fortin GM; Ducrot C; Giguère N; Kouwenhoven WM; Bourque MJ; Pacelli C; Varaschin RK; Brill M; Singh S; Wiseman PW; Trudeau LÉ
    FASEB J; 2019 Jan; 33(1):400-417. PubMed ID: 30011230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.