BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 23259634)

  • 1. Reactive oxygen species in plant pathogenesis: the role of perylenequinone photosensitizers.
    Daub ME; Herrero S; Chung KR
    Antioxid Redox Signal; 2013 Sep; 19(9):970-89. PubMed ID: 23259634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoactivated perylenequinone toxins in fungal pathogenesis of plants.
    Daub ME; Herrero S; Chung KR
    FEMS Microbiol Lett; 2005 Nov; 252(2):197-206. PubMed ID: 16165316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene cluster conservation identifies melanin and perylenequinone biosynthesis pathways in multiple plant pathogenic fungi.
    Ebert MK; Spanner RE; de Jonge R; Smith DJ; Holthusen J; Secor GA; Thomma BPHJ; Bolton MD
    Environ Microbiol; 2019 Mar; 21(3):913-927. PubMed ID: 30421572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Photoactivated Cercospora Toxin Cercosporin: Contributions to Plant Disease and Fundamental Biology.
    Daub ME; Ehrenshaft M
    Annu Rev Phytopathol; 2000 Sep; 38():461-490. PubMed ID: 11701851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane transporters in self resistance of Cercospora nicotianae to the photoactivated toxin cercosporin.
    Beseli A; Amnuaykanjanasin A; Herrero S; Thomas E; Daub ME
    Curr Genet; 2015 Nov; 61(4):601-20. PubMed ID: 25862648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perylenequinones act as broad-spectrum fungicides by generating reactive oxygen species both in the dark and in the light.
    Xing MZ; Zhang XZ; Sun ZL; Zhang HY
    J Agric Food Chem; 2003 Dec; 51(26):7722-4. PubMed ID: 14664535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reductive detoxification as a mechanism of fungal resistance to singlet oxygen-generating photosensitizers.
    Daub ME; Leisman GB; Clark RA; Bowden EF
    Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9588-92. PubMed ID: 1409670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of the yeast cpd1 gene in tobacco confers resistance to the fungal toxin cercosporin.
    Panagiotis M; Kritonas K; Irini NO; Kiriaki C; Nicolaos P; Athanasios T
    Biomol Eng; 2007 Jun; 24(2):245-51. PubMed ID: 17317309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of Cercospora zeae-maydis homologs of Rhodobacter sphaeroides 1O2-resistance genes in resistance to the photoactivated toxin cercosporin.
    Beseli A; Goulart da Silva M; Daub ME
    FEMS Microbiol Lett; 2015 Jan; 362(2):1-7. PubMed ID: 25670706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Characterization of the Cercosporin Biosynthetic Pathway in the Fungal Plant Pathogen Cercospora nicotianae.
    Newman AG; Townsend CA
    J Am Chem Soc; 2016 Mar; 138(12):4219-28. PubMed ID: 26938470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production, Signaling, and Scavenging Mechanisms of Reactive Oxygen Species in Fruit-Pathogen Interactions.
    Wang Y; Ji D; Chen T; Li B; Zhang Z; Qin G; Tian S
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31248143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced production of perylenequinones in the endophytic fungus Shiraia sp. Slf14 by calcium/calmodulin signal transduction.
    Liu B; Bao J; Zhang Z; Yan R; Wang Y; Yang H; Zhu D
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):153-163. PubMed ID: 29098415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactive oxygen species during plant-microorganism early interactions.
    Nanda AK; Andrio E; Marino D; Pauly N; Dunand C
    J Integr Plant Biol; 2010 Feb; 52(2):195-204. PubMed ID: 20377681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dihydrocercosporin singlet oxygen production and subcellular localization: a possible defense against cercosporin phototoxicity in Cercospora.
    Daub ME; Li M; Bilski P; Chignell CF
    Photochem Photobiol; 2000 Feb; 71(2):135-40. PubMed ID: 10687385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel gene required for cercosporin toxin resistance in the fungus Cercospora nicotianae.
    Chung KR; Jenns AE; Ehrenshaft M; Daub ME
    Mol Gen Genet; 1999 Sep; 262(2):382-9. PubMed ID: 10517336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas.
    Fones H; Preston GM
    FEMS Microbiol Lett; 2012 Feb; 327(1):1-8. PubMed ID: 22092667
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular toxicity of elsinochrome phytotoxins produced by the pathogenic fungus, Elsinoë fawcettii causing citrus scab.
    Liao HL; Chung KR
    New Phytol; 2008; 177(1):239-250. PubMed ID: 17953652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surviving the odds: From perception to survival of fungal phytopathogens under host-generated oxidative burst.
    Singh Y; Nair AM; Verma PK
    Plant Commun; 2021 May; 2(3):100142. PubMed ID: 34027389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel putative reductase (Cpd1p) and the multidrug exporter Snq2p are involved in resistance to cercosporin and other singlet oxygen-generating photosensitizers in Saccharomyces cerevisiae.
    Ververidis P; Davrazou F; Diallinas G; Georgakopoulos D; Kanellis AK; Panopoulos N
    Curr Genet; 2001 May; 39(3):127-36. PubMed ID: 11409174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
    Shahid M; Pourrut B; Dumat C; Nadeem M; Aslam M; Pinelli E
    Rev Environ Contam Toxicol; 2014; 232():1-44. PubMed ID: 24984833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.