These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Resonant transport of light from planar polymer waveguide into liquid-crystal microcavity. Jampani VS; Humar M; Muševič I Opt Express; 2013 Sep; 21(18):20506-16. PubMed ID: 24103924 [TBL] [Abstract][Full Text] [Related]
26. Resonance-based light scattering techniques for investigation of microdroplet processes. Ray AK; Devarakonda V; Gao Z Faraday Discuss; 2008; 137():85-98; discussion 99-113. PubMed ID: 18214099 [TBL] [Abstract][Full Text] [Related]
27. Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties. Morris SM; Ford AD; Pivnenko MN; Hadeler O; Coles HJ Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 1):061709. PubMed ID: 17280086 [TBL] [Abstract][Full Text] [Related]
28. Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets. Humar M; Muševič I Opt Express; 2011 Oct; 19(21):19836-44. PubMed ID: 21996991 [TBL] [Abstract][Full Text] [Related]
29. High-efficiency molecular counting in solution: single-molecule detection in electrodynamically focused microdroplet streams. Lermer N; Barnes MD; Kung CY; Whitten WB; Ramsey JM Anal Chem; 1997 Jun; 69(11):2115-21. PubMed ID: 21639255 [TBL] [Abstract][Full Text] [Related]
30. Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field. Jonáš A; Pilát Z; Ježek J; Bernatová S; Jedlička P; Aas M; Kiraz A; Zemánek P ACS Appl Mater Interfaces; 2021 Nov; 13(43):50657-50667. PubMed ID: 34674523 [TBL] [Abstract][Full Text] [Related]
31. Optical Trapping-Microspectroscopy of Single Aerosol Microdroplets in Air: Supercooling of Dimethylsulfoxide Microdroplets. Miura A; Nakajima R; Abe S; Kitamura N J Phys Chem A; 2020 Oct; 124(43):9035-9043. PubMed ID: 33054224 [TBL] [Abstract][Full Text] [Related]
32. Behavior of a thermotropic nematic liquid crystal confined to controlled pore glasses as studied by 129Xe NMR spectroscopy. Tallavaara P; Telkki VV; Jokisaari J J Phys Chem B; 2006 Nov; 110(43):21603-12. PubMed ID: 17064115 [TBL] [Abstract][Full Text] [Related]
33. Direct imaging of tunable photonic nanojets from a self-assembled liquid crystal microdroplet. Matsui T; Tsukuda K Opt Lett; 2017 Nov; 42(22):4663-4666. PubMed ID: 29140337 [TBL] [Abstract][Full Text] [Related]
34. All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets. Lee CR; Lin SH; Guo CH; Chang SH; Mo TS; Chu SC Opt Express; 2010 Feb; 18(3):2406-12. PubMed ID: 20174070 [TBL] [Abstract][Full Text] [Related]
35. Texture formation under phase ordering and phase separation in polymer-liquid crystal mixtures. Das SK; Rey AD J Chem Phys; 2004 Nov; 121(19):9733-43. PubMed ID: 15538897 [TBL] [Abstract][Full Text] [Related]
36. Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Huebner A; Bratton D; Whyte G; Yang M; Demello AJ; Abell C; Hollfelder F Lab Chip; 2009 Mar; 9(5):692-8. PubMed ID: 19224019 [TBL] [Abstract][Full Text] [Related]
38. Polarization smoothing for single beam by a nematic liquid crystal scrambler. Wang Y; Wang F; Zhang Y; Huang X; Hu D; Zheng W; Zhu R; Deng X Appl Opt; 2017 Oct; 56(29):8087-8091. PubMed ID: 29047670 [TBL] [Abstract][Full Text] [Related]
39. Laser trapping of small colloidal particles in a nematic liquid crystal: clouds and ghosts. Musevic I; Skarabot M; Babic D; Osterman N; Poberaj I; Nazarenko V; Nych A Phys Rev Lett; 2004 Oct; 93(18):187801. PubMed ID: 15525209 [TBL] [Abstract][Full Text] [Related]
40. Laser Trapping and Crystallization Dynamics of l-Phenylalanine at Solution Surface. Yuyama K; Sugiyama T; Masuhara H J Phys Chem Lett; 2013 Aug; 4(15):2436-40. PubMed ID: 26704424 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]