These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 23259804)

  • 1. Application of response surface methodology to maximize the productivity of scalable automated human embryonic stem cell manufacture.
    Ratcliffe E; Hourd P; Guijarro-Leach J; Rayment E; Williams DJ; Thomas RJ
    Regen Med; 2013 Jan; 8(1):39-48. PubMed ID: 23259804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel automated bioreactor for scalable process optimisation of haematopoietic stem cell culture.
    Ratcliffe E; Glen KE; Workman VL; Stacey AJ; Thomas RJ
    J Biotechnol; 2012 Oct; 161(3):387-90. PubMed ID: 22771559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of process quality engineering techniques to improve the understanding of the in vitro processing of stem cells for therapeutic use.
    Thomas RJ; Hourd PC; Williams DJ
    J Biotechnol; 2008 Sep; 136(3-4):148-55. PubMed ID: 18672011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a novel three-dimensional, automatable and integrated bioprocess for the differentiation of embryonic stem cells into pulmonary alveolar cells in a rotating vessel bioreactor system.
    Siti-Ismail N; Samadikuchaksaraei A; Bishop AE; Polak JM; Mantalaris A
    Tissue Eng Part C Methods; 2012 Apr; 18(4):263-72. PubMed ID: 22047052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechatronics for designing bioprocess monitoring and control systems: application to stem cell production.
    Mandenius CF
    J Biotechnol; 2012 Dec; 162(4):430-40. PubMed ID: 22982518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated, serum-free production of CTX0E03: a therapeutic clinical grade human neural stem cell line.
    Thomas RJ; Hope AD; Hourd P; Baradez M; Miljan EA; Sinden JD; Williams DJ
    Biotechnol Lett; 2009 Aug; 31(8):1167-72. PubMed ID: 19343502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal in-vitro expansion of chondroprogenitor cells in monolayer culture.
    Melero-Martin JM; Dowling MA; Smith M; Al-Rubeai M
    Biotechnol Bioeng; 2006 Feb; 93(3):519-33. PubMed ID: 16259002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GMP scale-up and banking of pluripotent stem cells for cellular therapy applications.
    Ausubel LJ; Lopez PM; Couture LA
    Methods Mol Biol; 2011; 767():147-59. PubMed ID: 21822873
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfabricated embryonic stem cell divider for large-scale propagation of human embryonic stem cells.
    Kim MS; Kim J; Han HW; Cho YS; Han YM; Park JK
    Lab Chip; 2007 Apr; 7(4):513-5. PubMed ID: 17389969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring and analysis of dynamic growth of human embryonic stem cells: comparison of automated instrumentation and conventional culturing methods.
    Narkilahti S; Rajala K; Pihlajamäki H; Suuronen R; Hovatta O; Skottman H
    Biomed Eng Online; 2007 Apr; 6():11. PubMed ID: 17428350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scalable production of transplantable dopaminergic neurons from hESCs and iPSCs in xeno-free defined conditions.
    Swistowski A; Zeng X
    Curr Protoc Stem Cell Biol; 2012 Aug; Chapter 2():Unit2D.12. PubMed ID: 22872425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maintenance of pluripotency in mouse embryonic stem cells cultivated in stirred microcarrier cultures.
    Marinho PA; Fernandes AM; Cruz JC; Rehen SK; Castilho LR
    Biotechnol Prog; 2010; 26(2):548-55. PubMed ID: 20014096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cost-effective manufacture of an allogeneic GM-CSF-secreting breast tumor vaccine in an academic cGMP facility.
    Davis-Sproul JM; Harris MP; Davidson NE; Kobrin BJ; Jaffee EM; Emens LA
    Cytotherapy; 2005; 7(1):46-56. PubMed ID: 16040383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Challenges and approaches to the culture of pluripotent human embryonic stem cells.
    Skottman H; Narkilahti S; Hovatta O
    Regen Med; 2007 May; 2(3):265-73. PubMed ID: 17511563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem cell culture engineering - process scale up and beyond.
    Sharma S; Raju R; Sui S; Hu WS
    Biotechnol J; 2011 Nov; 6(11):1317-29. PubMed ID: 21721127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioprocessing of embryonic stem cells for drug discovery.
    Thomson H
    Trends Biotechnol; 2007 May; 25(5):224-30. PubMed ID: 17379341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated image analysis with the potential for process quality control applications in stem cell maintenance and differentiation.
    Smith D; Glen K; Thomas R
    Biotechnol Prog; 2016; 32(1):215-23. PubMed ID: 26560993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Xeno-free derivation and culture of human embryonic stem cells: current status, problems and challenges.
    Lei T; Jacob S; Ajil-Zaraa I; Dubuisson JB; Irion O; Jaconi M; Feki A
    Cell Res; 2007 Aug; 17(8):682-8. PubMed ID: 17667917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feeder-layer free culture system for human embryonic stem cells.
    Amit M
    Methods Mol Biol; 2007; 407():11-20. PubMed ID: 18453245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clump passaging and expansion of human embryonic and induced pluripotent stem cells on mouse embryonic fibroblast feeder cells.
    Hartung O; Huo H; Daley GQ; Schlaeger TM
    Curr Protoc Stem Cell Biol; 2010 Aug; Chapter 1():Unit 1C.10. PubMed ID: 20814935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.