BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 23260247)

  • 1. Impact of miscanthus cultivation on trace metal availability in contaminated agricultural soils: complementary insights from kinetic extraction and physical fractionation.
    Iqbal M; Bermond A; Lamy I
    Chemosphere; 2013 Apr; 91(3):287-94. PubMed ID: 23260247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of different organic amendments on the potential availability of metals from soil: a study on metal fractionation and extraction kinetics by EDTA.
    Santos S; Costa CA; Duarte AC; Scherer HW; Schneider RJ; Esteves VI; Santos EB
    Chemosphere; 2010 Jan; 78(4):389-96. PubMed ID: 19962175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of historical mining assessed in soils by kinetic extraction and lead isotopic ratios.
    Camizuli E; Monna F; Bermond A; Manouchehri N; Besançon S; Losno R; van Oort F; Labanowski J; Perreira A; Chateau C; Alibert P
    Sci Total Environ; 2014 Feb; 472():425-36. PubMed ID: 24295759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic characterizing of soil trace metal availability using Soil/EDTA/Chelex mixture.
    Manouchehri N; Besançon S; Bermond A
    Chemosphere; 2011 May; 83(7):997-1004. PubMed ID: 21377711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aided phytostabilization using Miscanthus sinensis × giganteus on heavy metal-contaminated soils.
    Pavel PB; Puschenreiter M; Wenzel WW; Diacu E; Barbu CH
    Sci Total Environ; 2014 May; 479-480():125-31. PubMed ID: 24561291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator.
    Li Z; Wu L; Luo Y; Christie P
    Chemosphere; 2018 Mar; 194():432-440. PubMed ID: 29227891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of EDTA washing of metal polluted garden soils. Part I: Toxicity hazards and impact on soil properties.
    Jelusic M; Lestan D
    Sci Total Environ; 2014 Mar; 475():132-41. PubMed ID: 24315027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate of metal-associated POM in a soil under arable land use contaminated by metallurgical fallout in northern France.
    Labanowski J; Sebastia J; Foy E; Jongmans T; Lamy I; van Oort F
    Environ Pollut; 2007 Sep; 149(1):59-69. PubMed ID: 17289232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate.
    Labanowski J; Monna F; Bermond A; Cambier P; Fernandez C; Lamy I; van Oort F
    Environ Pollut; 2008 Apr; 152(3):693-701. PubMed ID: 17692441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.
    Jalali M; Khanlari ZV
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospective modeling with Hydrus-2D of 50 years Zn and Pb movements in low and moderately metal-contaminated agricultural soils.
    Rheinheimer dos Santos D; Cambier P; Mallmann FJ; Labanowski J; Lamy I; Tessier D; van Oort F
    J Contam Hydrol; 2013 Feb; 145():54-66. PubMed ID: 23313905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Availability and bioaccessibility of metals in fine particles of some urban soils.
    Madrid F; Biasioli M; Ajmone-Marsan F
    Arch Environ Contam Toxicol; 2008 Jul; 55(1):21-32. PubMed ID: 18058158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).
    Lai HY; Chen ZS
    Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Miscanthus cultivation on metal fractionation and human bioaccessibility in metal-contaminated soils: comparison between greenhouse and field experiments.
    Pelfrêne A; Kleckerová A; Pourrut B; Nsanganwimana F; Douay F; Waterlot C
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):3043-54. PubMed ID: 25231741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of EDTA washing on the species and mobility of heavy metals residual in soils.
    Zhang W; Huang H; Tan F; Wang H; Qiu R
    J Hazard Mater; 2010 Jan; 173(1-3):369-76. PubMed ID: 19748734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.
    Micó C; Recatalá L; Peris M; Sánchez J
    Chemosphere; 2006 Oct; 65(5):863-72. PubMed ID: 16635506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal fractionation in a contaminated soil after reforestation: temporal changes versus spatial variability.
    Nowack B; Schulin R; Luster J
    Environ Pollut; 2010 Oct; 158(10):3272-8. PubMed ID: 20724048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pb, Zn and Cd mobility, availability and fractionation in aged soil remediated by EDTA leaching.
    Udovic M; Lestan D
    Chemosphere; 2009 Mar; 74(10):1367-73. PubMed ID: 19110294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of grinding and shaking on Cd, Pb and Zn distribution in anthropogenically impacted soils.
    Waterlot C; Bidar G; Pruvot C; Douay F
    Talanta; 2012 Aug; 98():185-96. PubMed ID: 22939146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.