These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 23260571)

  • 1. Computational estimation of fluid mechanical benefits from a fluid deflector at the distal end of artificial vascular grafts.
    Roos MW; Wadbro E; Berggren M
    Comput Biol Med; 2013 Feb; 43(2):164-8. PubMed ID: 23260571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational fluid dynamics and vascular access.
    Krueger U; Zanow J; Scholz H
    Artif Organs; 2002 Jul; 26(7):571-5. PubMed ID: 12081514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review.
    Haruguchi H; Teraoka S
    J Artif Organs; 2003; 6(4):227-35. PubMed ID: 14691664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of the hemodynamics in 6mm and 4-7 mm hemodialysis grafts by means of CFD.
    Van Tricht I; De Wachter D; Tordoir J; Verdonck P
    J Biomech; 2006; 39(2):226-36. PubMed ID: 16321624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidating the role of graft compliance mismatch on intimal hyperplasia using an ex vivo organ culture model.
    Post A; Diaz-Rodriguez P; Balouch B; Paulsen S; Wu S; Miller J; Hahn M; Cosgriff-Hernandez E
    Acta Biomater; 2019 Apr; 89():84-94. PubMed ID: 30878448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis.
    Lei M; Archie JP; Kleinstreuer C
    J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses.
    Longest PW; Kleinstreuer C; Deanda A
    Ann Biomed Eng; 2005 Dec; 33(12):1752-66. PubMed ID: 16389524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of flow through a Miller cuff bypass graft.
    Henry FS; Küpper C; Lewington NP
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):207-17. PubMed ID: 12186713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local hemodynamics and intimal hyperplasia at the venous side of a porcine arteriovenous shunt.
    Manos TA; Sokolis DP; Giagini AT; Davos CH; Kakisis JD; Kritharis EP; Stergiopulos N; Karayannacos PE; Tsangaris S
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):681-90. PubMed ID: 20350847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro testing of a newly developed arteriovenous double-outflow graft.
    Heise M; Kirschner P; Rabsch A; Zanow J; Settmacher U; Heidenhain C
    J Vasc Surg; 2010 Aug; 52(2):421-8. PubMed ID: 20591600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disturbed flow in radial-cephalic arteriovenous fistulae for haemodialysis: low and oscillating shear stress locates the sites of stenosis.
    Ene-Iordache B; Remuzzi A
    Nephrol Dial Transplant; 2012 Jan; 27(1):358-68. PubMed ID: 21771751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts.
    Leuprecht A; Perktold K; Prosi M; Berk T; Trubel W; Schima H
    J Biomech; 2002 Feb; 35(2):225-36. PubMed ID: 11784541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational simulation of biomechanics in e-PTFE and venous Miller's cuffs: implications for intimal hyperplasia.
    Li XM; Rittgers SE
    J Med Eng Technol; 2005; 29(4):187-96. PubMed ID: 16012071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between experimentally measured flow patterns for straight and helical type graft.
    Bernad SI; Bosioc A; Bernad ES; Craina ML
    Biomed Mater Eng; 2014; 24(1):853-60. PubMed ID: 24211972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation of flow rate and angle of injected venous needle on influencing intimal hyperplasia at the venous anastomosis of the hemodialysis graft.
    Yang L; Yin A; Liu W
    Australas Phys Eng Sci Med; 2017 Mar; 40(1):239-248. PubMed ID: 28168585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blood Flow in Idealized Vascular Access for Hemodialysis: A Review of Computational Studies.
    Ene-Iordache B; Remuzzi A
    Cardiovasc Eng Technol; 2017 Sep; 8(3):295-312. PubMed ID: 28664239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remodeling and suppression of intimal hyperplasia of vascular grafts with a distal arteriovenous fistula in a rat model.
    Qin F; Dardik H; Pangilinan A; Robinson J; Chuy J; Wengerter K
    J Vasc Surg; 2001 Oct; 34(4):701-6. PubMed ID: 11668327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses.
    Ballyk PD; Walsh C; Butany J; Ojha M
    J Biomech; 1998 Mar; 31(3):229-37. PubMed ID: 9645537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamics and the development of anastomotic intimal hyperplasia of the polytetrafluoroethylene graft in dogs.
    Okadome K; Miyazaki T; Onohara T; Yamamura S; Sugimachi K
    Int Angiol; 1991; 10(4):238-43. PubMed ID: 1797934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.