These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 23260660)
1. Uncovering a region of heat shock protein 90 important for client binding in E. coli and chaperone function in yeast. Genest O; Reidy M; Street TO; Hoskins JR; Camberg JL; Agard DA; Masison DC; Wickner S Mol Cell; 2013 Feb; 49(3):464-73. PubMed ID: 23260660 [TBL] [Abstract][Full Text] [Related]
2. Functional and physical interaction between yeast Hsp90 and Hsp70. Kravats AN; Hoskins JR; Reidy M; Johnson JL; Doyle SM; Genest O; Masison DC; Wickner S Proc Natl Acad Sci U S A; 2018 Mar; 115(10):E2210-E2219. PubMed ID: 29463764 [TBL] [Abstract][Full Text] [Related]
4. Hsp70 and Hsp90 of E. coli Directly Interact for Collaboration in Protein Remodeling. Genest O; Hoskins JR; Kravats AN; Doyle SM; Wickner S J Mol Biol; 2015 Dec; 427(24):3877-89. PubMed ID: 26482100 [TBL] [Abstract][Full Text] [Related]
5. Structural elements in the flexible tail of the co-chaperone p23 coordinate client binding and progression of the Hsp90 chaperone cycle. Biebl MM; Lopez A; Rehn A; Freiburger L; Lawatscheck J; Blank B; Sattler M; Buchner J Nat Commun; 2021 Feb; 12(1):828. PubMed ID: 33547294 [TBL] [Abstract][Full Text] [Related]
6. J-domain Proteins form Binary Complexes with Hsp90 and Ternary Complexes with Hsp90 and Hsp70. Wickramaratne AC; Liao JY; Doyle SM; Hoskins JR; Puller G; Scott ML; Alao JP; Obaseki I; Dinan JC; Maity TK; Jenkins LM; Kravats AN; Wickner S J Mol Biol; 2023 Sep; 435(17):168184. PubMed ID: 37348754 [TBL] [Abstract][Full Text] [Related]
7. Folding and Domain Interactions of Three Orthologs of Hsp90 Studied by Single-Molecule Force Spectroscopy. Jahn M; Tych K; Girstmair H; Steinmaßl M; Hugel T; Buchner J; Rief M Structure; 2018 Jan; 26(1):96-105.e4. PubMed ID: 29276035 [TBL] [Abstract][Full Text] [Related]
8. The conserved NxNNWHW motif in Aha-type co-chaperones modulates the kinetics of Hsp90 ATPase stimulation. Mercier R; Wolmarans A; Schubert J; Neuweiler H; Johnson JL; LaPointe P Nat Commun; 2019 Mar; 10(1):1273. PubMed ID: 30894538 [TBL] [Abstract][Full Text] [Related]
9. Chaperoning the chaperone: a role for the co-chaperone Cpr7 in modulating Hsp90 function in Saccharomyces cerevisiae. Zuehlke AD; Johnson JL Genetics; 2012 Jul; 191(3):805-14. PubMed ID: 22505624 [TBL] [Abstract][Full Text] [Related]
10. A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone. Yamada S; Ono T; Mizuno A; Nemoto TK Eur J Biochem; 2003 Jan; 270(1):146-54. PubMed ID: 12492485 [TBL] [Abstract][Full Text] [Related]
11. Functional interactions between Hsp90 and the co-chaperones Cns1 and Cpr7 in Saccharomyces cerevisiae. Tesic M; Marsh JA; Cullinan SB; Gaber RF J Biol Chem; 2003 Aug; 278(35):32692-701. PubMed ID: 12788914 [TBL] [Abstract][Full Text] [Related]
12. Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling. Genest O; Hoskins JR; Camberg JL; Doyle SM; Wickner S Proc Natl Acad Sci U S A; 2011 May; 108(20):8206-11. PubMed ID: 21525416 [TBL] [Abstract][Full Text] [Related]
13. An acetylation site in the middle domain of Hsp90 regulates chaperone function. Scroggins BT; Robzyk K; Wang D; Marcu MG; Tsutsumi S; Beebe K; Cotter RJ; Felts S; Toft D; Karnitz L; Rosen N; Neckers L Mol Cell; 2007 Jan; 25(1):151-9. PubMed ID: 17218278 [TBL] [Abstract][Full Text] [Related]
14. Charged linker sequence modulates eukaryotic heat shock protein 90 (Hsp90) chaperone activity. Tsutsumi S; Mollapour M; Prodromou C; Lee CT; Panaretou B; Yoshida S; Mayer MP; Neckers LM Proc Natl Acad Sci U S A; 2012 Feb; 109(8):2937-42. PubMed ID: 22315411 [TBL] [Abstract][Full Text] [Related]
15. Both the charged linker region and ATPase domain of Hsp90 are essential for Rad51-dependent DNA repair. Suhane T; Laskar S; Advani S; Roy N; Varunan S; Bhattacharyya D; Bhattacharyya S; Bhattacharyya MK Eukaryot Cell; 2015 Jan; 14(1):64-77. PubMed ID: 25380755 [TBL] [Abstract][Full Text] [Related]
16. Mutations in the Hsp90 N Domain Identify a Site that Controls Dimer Opening and Expand Human Hsp90α Function in Yeast. Reidy M; Masison DC J Mol Biol; 2020 Jul; 432(16):4673-4689. PubMed ID: 32565117 [TBL] [Abstract][Full Text] [Related]
17. Hsp90 is regulated by a switch point in the C-terminal domain. Retzlaff M; Stahl M; Eberl HC; Lagleder S; Beck J; Kessler H; Buchner J EMBO Rep; 2009 Oct; 10(10):1147-53. PubMed ID: 19696785 [TBL] [Abstract][Full Text] [Related]
18. Dual Roles for Yeast Sti1/Hop in Regulating the Hsp90 Chaperone Cycle. Reidy M; Kumar S; Anderson DE; Masison DC Genetics; 2018 Aug; 209(4):1139-1154. PubMed ID: 29930177 [TBL] [Abstract][Full Text] [Related]
19. In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. Obermann WM; Sondermann H; Russo AA; Pavletich NP; Hartl FU J Cell Biol; 1998 Nov; 143(4):901-10. PubMed ID: 9817749 [TBL] [Abstract][Full Text] [Related]
20. The architecture of functional modules in the Hsp90 co-chaperone Sti1/Hop. Schmid AB; Lagleder S; Gräwert MA; Röhl A; Hagn F; Wandinger SK; Cox MB; Demmer O; Richter K; Groll M; Kessler H; Buchner J EMBO J; 2012 Mar; 31(6):1506-17. PubMed ID: 22227520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]