These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 23260674)
1. Assessment of applicability domain for multivariate counter-propagation artificial neural network predictive models by minimum euclidean distance space analysis: a case study. Minovski N; Župerl Š; Drgan V; Novič M Anal Chim Acta; 2013 Jan; 759():28-42. PubMed ID: 23260674 [TBL] [Abstract][Full Text] [Related]
2. Chemometrics approach for the prediction of structure-activity relationship for membrane transporter bilitranslocase. Martinčič R; Venko K; Župerl Š; Novič M SAR QSAR Environ Res; 2014; 25(11):853-72. PubMed ID: 25337672 [TBL] [Abstract][Full Text] [Related]
3. Evaluating the applicability domain in the case of classification predictive models for carcinogenicity based on the counter propagation artificial neural network. Fjodorova N; Novič M; Roncaglioni A; Benfenati E J Comput Aided Mol Des; 2011 Dec; 25(12):1147-58. PubMed ID: 22139475 [TBL] [Abstract][Full Text] [Related]
4. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318 [TBL] [Abstract][Full Text] [Related]
5. Experimental determination and prediction of bilitranslocase transport activity. Župerl Š; Fornasaro S; Novič M; Passamonti S Anal Chim Acta; 2011 Oct; 705(1-2):322-33. PubMed ID: 21962375 [TBL] [Abstract][Full Text] [Related]
6. A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study. Wu J; Mei J; Wen S; Liao S; Chen J; Shen Y J Comput Chem; 2010 Jul; 31(10):1956-68. PubMed ID: 20512843 [TBL] [Abstract][Full Text] [Related]
7. Validation of counter propagation neural network models for predictive toxicology according to the OECD principles: a case study. Vracko M; Bandelj V; Barbieri P; Benfenati E; Chaudhry Q; Cronin M; Devillers J; Gallegos A; Gini G; Gramatica P; Helma C; Mazzatorta P; Neagu D; Netzeva T; Pavan M; Patlewicz G; Randić M; Tsakovska I; Worth A SAR QSAR Environ Res; 2006 Jun; 17(3):265-84. PubMed ID: 16815767 [TBL] [Abstract][Full Text] [Related]
8. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks. Nandi S; Vracko M; Bagchi MC Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360 [TBL] [Abstract][Full Text] [Related]
9. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow). Papa E; Villa F; Gramatica P J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902 [TBL] [Abstract][Full Text] [Related]
10. In silico screening of estrogen-like chemicals based on different nonlinear classification models. Liu H; Papa E; Walker JD; Gramatica P J Mol Graph Model; 2007 Jul; 26(1):135-44. PubMed ID: 17293141 [TBL] [Abstract][Full Text] [Related]
11. QSPR studies on soot-water partition coefficients of persistent organic pollutants by using artificial neural network. Jiao L Chemosphere; 2010 Jul; 80(6):671-5. PubMed ID: 20452639 [TBL] [Abstract][Full Text] [Related]
12. Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds. Shen M; Béguin C; Golbraikh A; Stables JP; Kohn H; Tropsha A J Med Chem; 2004 Apr; 47(9):2356-64. PubMed ID: 15084134 [TBL] [Abstract][Full Text] [Related]
13. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Liu H; Papa E; Gramatica P Chem Res Toxicol; 2006 Nov; 19(11):1540-8. PubMed ID: 17112243 [TBL] [Abstract][Full Text] [Related]
14. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. Zhu H; Tropsha A; Fourches D; Varnek A; Papa E; Gramatica P; Oberg T; Dao P; Cherkasov A; Tetko IV J Chem Inf Model; 2008 Apr; 48(4):766-84. PubMed ID: 18311912 [TBL] [Abstract][Full Text] [Related]
15. Predicting the predictability: a unified approach to the applicability domain problem of QSAR models. Dragos H; Gilles M; Alexandre V J Chem Inf Model; 2009 Jul; 49(7):1762-76. PubMed ID: 19530661 [TBL] [Abstract][Full Text] [Related]
16. Three new consensus QSAR models for the prediction of Ames genotoxicity. Votano JR; Parham M; Hall LH; Kier LB; Oloff S; Tropsha A; Xie Q; Tong W Mutagenesis; 2004 Sep; 19(5):365-77. PubMed ID: 15388809 [TBL] [Abstract][Full Text] [Related]
17. The importance of the domain of applicability in QSAR modeling. Weaver S; Gleeson MP J Mol Graph Model; 2008 Jun; 26(8):1315-26. PubMed ID: 18328754 [TBL] [Abstract][Full Text] [Related]
18. Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug-drug complex networks. Prado-Prado FJ; Martinez de la Vega O; Uriarte E; Ubeira FM; Chou KC; González-Díaz H Bioorg Med Chem; 2009 Jan; 17(2):569-75. PubMed ID: 19112024 [TBL] [Abstract][Full Text] [Related]
19. Merging Counter-Propagation and Back-Propagation Algorithms: Overcoming the Limitations of Counter-Propagation Neural Network Models. Drgan V; Venko K; Sluga J; Novič M Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673742 [TBL] [Abstract][Full Text] [Related]
20. Prediction of chemical carcinogenicity by machine learning approaches. Tan NX; Rao HB; Li ZR; Li XY SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]