BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 23260681)

  • 1. Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Sensors (Basel); 2011; 11(6):6214-36. PubMed ID: 22163951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining chemoselective ligation with polyhistidine-driven self-assembly for the modular display of biomolecules on quantum dots.
    Prasuhn DE; Blanco-Canosa JB; Vora GJ; Delehanty JB; Susumu K; Mei BC; Dawson PE; Medintz IL
    ACS Nano; 2010 Jan; 4(1):267-78. PubMed ID: 20099912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleic acid-based fluorescent probes and their analytical potential.
    Juskowiak B
    Anal Bioanal Chem; 2011 Mar; 399(9):3157-76. PubMed ID: 21046088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots.
    Swift JL; Heuff R; Cramb DT
    Biophys J; 2006 Feb; 90(4):1396-410. PubMed ID: 16299079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biosensing with quantum dots: a microfluidic approach.
    Vannoy CH; Tavares AJ; Noor MO; Uddayasankar U; Krull UJ
    Sensors (Basel); 2011; 11(10):9732-63. PubMed ID: 22163723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligase detection reaction generation of reverse molecular beacons for near real-time analysis of bacterial pathogens using single-pair fluorescence resonance energy transfer and a cyclic olefin copolymer microfluidic chip.
    Peng Z; Soper SA; Pingle MR; Barany F; Davis LM
    Anal Chem; 2010 Dec; 82(23):9727-35. PubMed ID: 21047095
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary Oligonucleotide Conjugated Multicolor Carbon Dots for Intracellular Recognition of Biological Events.
    Srivastava I; Misra SK; Bangru S; Boateng KA; Soares JANT; Schwartz-Duval AS; Kalsotra A; Pan D
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16137-16149. PubMed ID: 32182420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rationally Designed Dual Base Pair Mismatch Enables Toehold-Mediated Strand Displacement to Efficiently Recognize Single-Nucleotide Polymorphism without Enzymes.
    Zhang Y; Wang L; Ye J; Chen J; Xu S; Bu S; Deng M; Bian L; Zhao X; Zhang C; Weng L; Zhang D
    Anal Chem; 2024 Jan; 96(1):554-563. PubMed ID: 38112727
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2-Allyl- and Propargylamino-dATPs for Site-Specific Enzymatic Introduction of a Single Modification in the Minor Groove of DNA.
    Matyašovský J; Pohl R; Hocek M
    Chemistry; 2018 Oct; 24(56):14938-14941. PubMed ID: 30074286
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow non-specific accumulation of 2'-deoxy and 2'-O-methyl oligonucleotide probes at mitochondria in live cells.
    Rhee WJ; Bao G
    Nucleic Acids Res; 2010 May; 38(9):e109. PubMed ID: 20147460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic incorporation of multiple dyes for increased sensitivity in QD-FRET sensing for DNA methylation detection.
    Bailey VJ; Keeley BP; Zhang Y; Ho YP; Easwaran H; Brock MV; Pelosky KL; Carraway HE; Baylin SB; Herman JG; Wang TH
    Chembiochem; 2010 Jan; 11(1):71-4. PubMed ID: 19904794
    [No Abstract]   [Full Text] [Related]  

  • 12. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards.
    Mathur D; Díaz SA; Hildebrandt N; Pensack RD; Yurke B; Biaggne A; Li L; Melinger JS; Ancona MG; Knowlton WB; Medintz IL
    Chem Soc Rev; 2023 Nov; 52(22):7848-7948. PubMed ID: 37872857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time monitoring of in vitro transcriptional RNA synthesis using fluorescence resonance energy transfer.
    Sei-Iida Y; Koshimoto H; Kondo S; Tsuji A
    Nucleic Acids Res; 2000 Jun; 28(12):E59. PubMed ID: 10871382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-Cell
    Xiao L; Guo J
    Front Cell Dev Biol; 2018; 6():42. PubMed ID: 29696143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A competitive displacement assay with quantum dots as fluorescence resonance energy transfer donors.
    Vannoy CH; Chong L; Le C; Krull UJ
    Anal Chim Acta; 2013 Jan; 759():92-9. PubMed ID: 23260681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.
    Noor MO; Tavares AJ; Krull UJ
    Anal Chim Acta; 2013 Jul; 788():148-57. PubMed ID: 23845494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Anal Chem; 2009 May; 81(10):4113-20. PubMed ID: 19358559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing mixed films of immobilized oligonucleotides and quantum dots for the multiplexed detection of nucleic acid hybridization using a combination of fluorescence resonance energy transfer and direct excitation of fluorescence.
    Algar WR; Krull UJ
    Langmuir; 2010 Apr; 26(8):6041-7. PubMed ID: 20000340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting RNA/DNA hybridization using double-labeled donor probes with enhanced fluorescence resonance energy transfer signals.
    Okamura Y; Watanabe Y
    Methods Mol Biol; 2006; 335():43-56. PubMed ID: 16785619
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.