BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 23260848)

  • 1. Automated biosurveillance data from England and Wales, 1991-2011.
    Enki DG; Noufaily A; Garthwaite PH; Andrews NJ; Charlett A; Lane C; Farrington CP
    Emerg Infect Dis; 2013 Jan; 19(1):35-42. PubMed ID: 23260848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Man and microorganisms. Health and disease].
    Pokrovskiĭ VI
    Vestn Ross Akad Med Nauk; 2000; (11):3-6. PubMed ID: 11186287
    [No Abstract]   [Full Text] [Related]  

  • 3. Enhancing time-series detection algorithms for automated biosurveillance.
    Tokars JI; Burkom H; Xing J; English R; Bloom S; Cox K; Pavlin JA
    Emerg Infect Dis; 2009 Apr; 15(4):533-9. PubMed ID: 19331728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosurveillance in outbreak investigations.
    Kaydos-Daniels SC; Rojas Smith L; Farris TR
    Biosecur Bioterror; 2013 Mar; 11(1):20-8. PubMed ID: 23448272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laboratory-guided detection of disease outbreaks: three generations of surveillance systems.
    Sintchenko V; Gallego B
    Arch Pathol Lab Med; 2009 Jun; 133(6):916-25. PubMed ID: 19492884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new statistical early outbreak detection method for biosurveillance and performance comparisons.
    Cengiz Ü; Karahasan M
    Stat Med; 2019 Nov; 38(27):5236-5258. PubMed ID: 31588592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Outbreaks of infectious intestinal disease in schools and nurseries in England and Wales 1992 to 1994.
    Evans HS; Maguire H
    Commun Dis Rep CDR Rev; 1996 Jun; 6(7):R103-8. PubMed ID: 8680501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General outbreaks of infectious intestinal disease linked with poultry, England and Wales, 1992-1999.
    Kessel AS; Gillespie IA; O'Brien SJ; Adak GK; Humphrey TJ; Ward LR
    Commun Dis Public Health; 2001 Sep; 4(3):171-7. PubMed ID: 11732355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying the climatic drivers of honey bee disease in England and Wales.
    Rowland BW; Rushton SP; Shirley MDF; Brown MA; Budge GE
    Sci Rep; 2021 Nov; 11(1):21953. PubMed ID: 34754028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-ALIRT biosurveillance detection algorithm evaluation.
    Siegrist D; Pavlin J
    MMWR Suppl; 2004 Sep; 53():152-8. PubMed ID: 15714645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internet-based biosurveillance methods for vector-borne diseases: Are they novel public health tools or just novelties?
    Pollett S; Althouse BM; Forshey B; Rutherford GW; Jarman RG
    PLoS Negl Trop Dis; 2017 Nov; 11(11):e0005871. PubMed ID: 29190281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimating the joint disease outbreak-detection time when an automated biosurveillance system is augmenting traditional clinical case finding.
    Shen Y; Adamou C; Dowling JN; Cooper GF
    J Biomed Inform; 2008 Apr; 41(2):224-31. PubMed ID: 18194876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. General outbreaks of infectious intestinal disease linked with red meat, England and Wales, 1992-1999.
    Smerdon WJ; Adak GK; O'Brien SJ; Gillespie IA; Reacher M
    Commun Dis Public Health; 2001 Dec; 4(4):259-67. PubMed ID: 12109392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An evaluation and comparison of three commonly used statistical models for automatic detection of outbreaks in epidemiological data of communicable diseases.
    Rolfhamre P; Ekdahl K
    Epidemiol Infect; 2006 Aug; 134(4):863-71. PubMed ID: 16371181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural models used in real-time biosurveillance outbreak detection and outbreak curve isolation from noisy background morbidity levels.
    Cheng KE; Crary DJ; Ray J; Safta C
    J Am Med Inform Assoc; 2013 May; 20(3):435-40. PubMed ID: 23037798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors influencing performance of internet-based biosurveillance systems used in epidemic intelligence for early detection of infectious diseases outbreaks.
    Barboza P; Vaillant L; Le Strat Y; Hartley DM; Nelson NP; Mawudeku A; Madoff LC; Linge JP; Collier N; Brownstein JS; Astagneau P
    PLoS One; 2014; 9(3):e90536. PubMed ID: 24599062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early detection of influenza outbreaks using the DC Department of Health's syndromic surveillance system.
    Griffin BA; Jain AK; Davies-Cole J; Glymph C; Lum G; Washington SC; Stoto MA
    BMC Public Health; 2009 Dec; 9():483. PubMed ID: 20028535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved algorithm for outbreak detection in multiple surveillance systems.
    Noufaily A; Enki DG; Farrington P; Garthwaite P; Andrews N; Charlett A
    Stat Med; 2013 Mar; 32(7):1206-22. PubMed ID: 22941770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the determinants of outbreak detection performance through simulation and machine learning.
    Jafarpour N; Izadi M; Precup D; Buckeridge DL
    J Biomed Inform; 2015 Feb; 53():180-7. PubMed ID: 25445482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Common gastrointestinal infections, England and Wales: laboratory reports, weeks 10-14/96.
    Commun Dis Rep CDR Wkly; 1996 Apr; 6(15):126-8. PubMed ID: 8932597
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.