BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 23261051)

  • 1. Cell-cycle and DNA damage regulation of the DNA mismatch repair protein Msh2 occurs at the transcriptional and post-transcriptional level.
    Tennen RI; Haye JE; Wijayatilake HD; Arlow T; Ponzio D; Gammie AE
    DNA Repair (Amst); 2013 Feb; 12(2):97-109. PubMed ID: 23261051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MutSα deficiency increases tolerance to DNA damage in yeast lacking postreplication repair.
    Berg IL; Persson JO; Åström SU
    DNA Repair (Amst); 2020; 91-92():102870. PubMed ID: 32470850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the casein kinase I isoform, Hrr25, and the cell cycle-regulatory transcription factor, SBF, in the transcriptional response to DNA damage in Saccharomyces cerevisiae.
    Ho Y; Mason S; Kobayashi R; Hoekstra M; Andrews B
    Proc Natl Acad Sci U S A; 1997 Jan; 94(2):581-6. PubMed ID: 9012827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 complexes display distinct requirements for DNA binding domain I in mismatch recognition.
    Lee SD; Surtees JA; Alani E
    J Mol Biol; 2007 Feb; 366(1):53-66. PubMed ID: 17157869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic Instability Promoted by Overexpression of Mismatch Repair Factors in Yeast: A Model for Understanding Cancer Progression.
    Chakraborty U; Dinh TA; Alani E
    Genetics; 2018 Jun; 209(2):439-456. PubMed ID: 29654124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP binding and hydrolysis by Saccharomyces cerevisiae Msh2-Msh3 are differentially modulated by mismatch and double-strand break repair DNA substrates.
    Kumar C; Eichmiller R; Wang B; Williams GM; Bianco PR; Surtees JA
    DNA Repair (Amst); 2014 Jun; 18():18-30. PubMed ID: 24746922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mispair-specific recruitment of the Mlh1-Pms1 complex identifies repair substrates of the Saccharomyces cerevisiae Msh2-Msh3 complex.
    Srivatsan A; Bowen N; Kolodner RD
    J Biol Chem; 2014 Mar; 289(13):9352-64. PubMed ID: 24550389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The properties of Msh2-Msh6 ATP binding mutants suggest a signal amplification mechanism in DNA mismatch repair.
    Graham WJ; Putnam CD; Kolodner RD
    J Biol Chem; 2018 Nov; 293(47):18055-18070. PubMed ID: 30237169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of Msh2 and Msh6 subunits to the asymmetric ATPase and DNA mismatch binding activities of Saccharomyces cerevisiae Msh2-Msh6 mismatch repair protein.
    Antony E; Khubchandani S; Chen S; Hingorani MM
    DNA Repair (Amst); 2006 Feb; 5(2):153-62. PubMed ID: 16214425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Saccharomyces cerevisiae Msh2-Msh6 DNA binding kinetics reveal a mechanism of targeting sites for DNA mismatch repair.
    Zhai J; Hingorani MM
    Proc Natl Acad Sci U S A; 2010 Jan; 107(2):680-5. PubMed ID: 20080735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rad53-dependent phosphorylation of Swi6 and down-regulation of CLN1 and CLN2 transcription occur in response to DNA damage in Saccharomyces cerevisiae.
    Sidorova JM; Breeden LL
    Genes Dev; 1997 Nov; 11(22):3032-45. PubMed ID: 9367985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple SWI6-dependent cis-acting elements control SWI4 transcription through the cell cycle.
    Foster R; Mikesell GE; Breeden L
    Mol Cell Biol; 1993 Jun; 13(6):3792-801. PubMed ID: 8497280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High functional overlap between MluI cell-cycle box binding factor and Swi4/6 cell-cycle box binding factor in the G1/S transcriptional program in Saccharomyces cerevisiae.
    Bean JM; Siggia ED; Cross FR
    Genetics; 2005 Sep; 171(1):49-61. PubMed ID: 15965243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteasome inhibition rescues clinically significant unstable variants of the mismatch repair protein Msh2.
    Arlow T; Scott K; Wagenseller A; Gammie A
    Proc Natl Acad Sci U S A; 2013 Jan; 110(1):246-51. PubMed ID: 23248292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts.
    Yuan F; Lai F; Gu L; Zhou W; El Hokayem J; Zhang Y
    Methods; 2009 May; 48(1):14-8. PubMed ID: 19250969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple factors insulate Msh2-Msh6 mismatch repair activity from defects in Msh2 domain I.
    Kumar C; Piacente SC; Sibert J; Bukata AR; O'Connor J; Alani E; Surtees JA
    J Mol Biol; 2011 Aug; 411(4):765-80. PubMed ID: 21726567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mismatch repair mutants in yeast are not defective in transcription-coupled DNA repair of UV-induced DNA damage.
    Sweder KS; Verhage RA; Crowley DJ; Crouse GF; Brouwer J; Hanawalt PC
    Genetics; 1996 Jul; 143(3):1127-35. PubMed ID: 8807287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs.
    Harrington JM; Kolodner RD
    Mol Cell Biol; 2007 Sep; 27(18):6546-54. PubMed ID: 17636021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rad51-mediated double-strand break repair and mismatch correction of divergent substrates.
    Anand R; Beach A; Li K; Haber J
    Nature; 2017 Apr; 544(7650):377-380. PubMed ID: 28405019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elevated MSH2 MSH3 expression interferes with DNA metabolism in vivo.
    Medina-Rivera M; Phelps S; Sridharan M; Becker J; Lamb NA; Kumar C; Sutton MD; Bielinsky A; Balakrishnan L; Surtees JA
    Nucleic Acids Res; 2023 Dec; 51(22):12185-12206. PubMed ID: 37930834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.