These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. In Vivo Gene-Silencing in Fibrotic Liver by siRNA-Loaded Cationic Nanohydrogel Particles. Kaps L; Nuhn L; Aslam M; Brose A; Foerster F; Rosigkeit S; Renz P; Heck R; Kim YO; Lieberwirth I; Schuppan D; Zentel R Adv Healthc Mater; 2015 Dec; 4(18):2809-15. PubMed ID: 26627192 [TBL] [Abstract][Full Text] [Related]
4. Hemocompatibility of siRNA loaded dextran nanogels. Naeye B; Deschout H; Röding M; Rudemo M; Delanghe J; Devreese K; Demeester J; Braeckmans K; De Smedt SC; Raemdonck K Biomaterials; 2011 Dec; 32(34):9120-7. PubMed ID: 21890194 [TBL] [Abstract][Full Text] [Related]
5. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Gomes-da-Silva LC; Fonseca NA; Moura V; Pedroso de Lima MC; Simões S; Moreira JN Acc Chem Res; 2012 Jul; 45(7):1163-71. PubMed ID: 22568781 [TBL] [Abstract][Full Text] [Related]
6. Stability of siRNA polyplexes from poly(ethylenimine) and poly(ethylenimine)-g-poly(ethylene glycol) under in vivo conditions: effects on pharmacokinetics and biodistribution measured by Fluorescence Fluctuation Spectroscopy and Single Photon Emission Computed Tomography (SPECT) imaging. Merkel OM; Librizzi D; Pfestroff A; Schurrat T; Buyens K; Sanders NN; De Smedt SC; Béhé M; Kissel T J Control Release; 2009 Sep; 138(2):148-59. PubMed ID: 19463870 [TBL] [Abstract][Full Text] [Related]
7. In vivo pharmacokinetics, tissue distribution and underlying mechanisms of various PEI(-PEG)/siRNA complexes. Malek A; Merkel O; Fink L; Czubayko F; Kissel T; Aigner A Toxicol Appl Pharmacol; 2009 Apr; 236(1):97-108. PubMed ID: 19371615 [TBL] [Abstract][Full Text] [Related]
8. The influence of natural pulmonary surfactant on the efficacy of siRNA-loaded dextran nanogels. De Backer L; Braeckmans K; Demeester J; De Smedt SC; Raemdonck K Nanomedicine (Lond); 2013 Oct; 8(10):1625-38. PubMed ID: 23418856 [TBL] [Abstract][Full Text] [Related]
9. Prolonged gene silencing by combining siRNA nanogels and photochemical internalization. Raemdonck K; Naeye B; Høgset A; Demeester J; De Smedt SC J Control Release; 2010 Aug; 145(3):281-8. PubMed ID: 20403396 [TBL] [Abstract][Full Text] [Related]
10. Nonviral siRNA delivery to the lung: investigation of PEG-PEI polyplexes and their in vivo performance. Merkel OM; Beyerle A; Librizzi D; Pfestroff A; Behr TM; Sproat B; Barth PJ; Kissel T Mol Pharm; 2009; 6(4):1246-60. PubMed ID: 19606864 [TBL] [Abstract][Full Text] [Related]
11. Hydrophobic interactions between polymeric carrier and palmitic acid-conjugated siRNA improve PEGylated polyplex stability and enhance in vivo pharmacokinetics and tumor gene silencing. Sarett SM; Werfel TA; Chandra I; Jackson MA; Kavanaugh TE; Hattaway ME; Giorgio TD; Duvall CL Biomaterials; 2016 Aug; 97():122-32. PubMed ID: 27163624 [TBL] [Abstract][Full Text] [Related]
12. Multifunctional nanogels for siRNA delivery. Smith MH; Lyon LA Acc Chem Res; 2012 Jul; 45(7):985-93. PubMed ID: 22181582 [TBL] [Abstract][Full Text] [Related]
13. Polyethyleneimine-based core-shell nanogels: a promising siRNA carrier for argininosuccinate synthetase mRNA knockdown in HeLa cells. Mimi H; Ho KM; Siu YS; Wu A; Li P J Control Release; 2012 Feb; 158(1):123-30. PubMed ID: 22094103 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic Assembly of siRNA-Loaded Micelleplexes for Tumor Targeting in an Orthotopic Model of Ovarian Cancer. Feldmann DP; Jones S; Douglas K; Shields AF; Merkel OM Methods Mol Biol; 2019; 1974():355-369. PubMed ID: 31099014 [TBL] [Abstract][Full Text] [Related]
15. Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. Ragelle H; Riva R; Vandermeulen G; Naeye B; Pourcelle V; Le Duff CS; D'Haese C; Nysten B; Braeckmans K; De Smedt SC; Jérôme C; Préat V J Control Release; 2014 Feb; 176():54-63. PubMed ID: 24389132 [TBL] [Abstract][Full Text] [Related]
16. Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane. Zuckerman JE; Choi CH; Han H; Davis ME Proc Natl Acad Sci U S A; 2012 Feb; 109(8):3137-42. PubMed ID: 22315430 [TBL] [Abstract][Full Text] [Related]
17. Unraveling the effects of siRNA carrier systems on cell physiology: a multiparametric approach demonstrated on dextran nanogels. Soenen SJ; De Backer L; Manshian B; Doak S; Raemdonck K; Demeester J; Braeckmans K; De Smedt S Nanomedicine (Lond); 2014 Jan; 9(1):61-76. PubMed ID: 23755980 [TBL] [Abstract][Full Text] [Related]
18. Comparison of polymeric siRNA nanocarriers in a murine LPS-activated macrophage cell line: gene silencing, toxicity and off-target gene expression. Jensen LB; Griger J; Naeye B; Varkouhi AK; Raemdonck K; Schiffelers R; Lammers T; Storm G; de Smedt SC; Sproat BS; Nielsen HM; Foged C Pharm Res; 2012 Mar; 29(3):669-82. PubMed ID: 21971827 [TBL] [Abstract][Full Text] [Related]
19. PEGylated cyclodextrins as novel siRNA nanosystems: correlations between polyethylene glycol length and nanoparticle stability. Godinho BM; Ogier JR; Quinlan A; Darcy R; Griffin BT; Cryan JF; O'Driscoll CM Int J Pharm; 2014 Oct; 473(1-2):105-12. PubMed ID: 24992319 [TBL] [Abstract][Full Text] [Related]
20. In Vitro Evaluation of Anti-Aggregation and Degradation Behavior of PEGylated Polymeric Nanogels under In Vivo Like Conditions. Chen Y; Dakwar GR; Braeckmans K; Lammers T; Hennink WE; Metselaar JM Macromol Biosci; 2018 Jan; 18(1):. PubMed ID: 29152858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]