These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 23261242)
1. The influence of axial image resolution on atherosclerotic plaque stress computations. Nieuwstadt HA; Akyildiz AC; Speelman L; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ J Biomech; 2013 Feb; 46(4):689-95. PubMed ID: 23261242 [TBL] [Abstract][Full Text] [Related]
2. 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses. Cilla M; Peña E; Martínez MA Biomech Model Mechanobiol; 2012 Sep; 11(7):1001-13. PubMed ID: 22227796 [TBL] [Abstract][Full Text] [Related]
3. Initial stress in biomechanical models of atherosclerotic plaques. Speelman L; Akyildiz AC; den Adel B; Wentzel JJ; van der Steen AF; Virmani R; van der Weerd L; Jukema JW; Poelmann RE; van Brummelen EH; Gijsen FJ J Biomech; 2011 Sep; 44(13):2376-82. PubMed ID: 21782179 [TBL] [Abstract][Full Text] [Related]
4. Influence of lumen shape and vessel geometry on plaque stresses: possible role in the increased vulnerability of a remodelled vessel and the "shoulder" of a plaque. Kumar RK; Balakrishnan KR Heart; 2005 Nov; 91(11):1459-65. PubMed ID: 15774611 [TBL] [Abstract][Full Text] [Related]
5. Stratification of risk in thin cap fibroatheromas using peak plaque stress estimates from idealized finite element models. Dolla WJ; House JA; Marso SP Med Eng Phys; 2012 Nov; 34(9):1330-8. PubMed ID: 22342558 [TBL] [Abstract][Full Text] [Related]
6. Effect of residual stress on peak cap stress in arteries. Vandiver R Math Biosci Eng; 2014 Oct; 11(5):1199-214. PubMed ID: 25347810 [TBL] [Abstract][Full Text] [Related]
8. Peak cap stress calculations in coronary atherosclerotic plaques with an incomplete necrotic core geometry. Kok AM; Speelman L; Virmani R; van der Steen AF; Gijsen FJ; Wentzel JJ Biomed Eng Online; 2016 May; 15(1):48. PubMed ID: 27145748 [TBL] [Abstract][Full Text] [Related]
9. The effects of plaque morphology and material properties on peak cap stress in human coronary arteries. Akyildiz AC; Speelman L; Nieuwstadt HA; van Brummelen H; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ Comput Methods Biomech Biomed Engin; 2016; 19(7):771-9. PubMed ID: 26237279 [TBL] [Abstract][Full Text] [Related]
10. Does microcalcification increase the risk of rupture? Cilla M; Monterde D; Peña E; Martínez MÁ Proc Inst Mech Eng H; 2013 May; 227(5):588-99. PubMed ID: 23637269 [TBL] [Abstract][Full Text] [Related]
11. Tissue prolapse and stresses in stented coronary arteries: A computer model for multi-layer atherosclerotic plaque. Hajiali Z; Dabagh M; Debusschere N; De Beule M; Jalali P Comput Biol Med; 2015 Nov; 66():39-46. PubMed ID: 26378501 [TBL] [Abstract][Full Text] [Related]
12. Morphological and biomechanical aspects of vulnerable coronary plaque. Finet G; Ohayon J; Rioufol G; Lefloch S; Tracqui P; Dubreuil O; Tabib A Arch Mal Coeur Vaiss; 2007; 100(6-7):547-53. PubMed ID: 17893637 [TBL] [Abstract][Full Text] [Related]
13. Elucidating atherosclerotic vulnerable plaque rupture by modeling cross substitution of ApoE-/- mouse and human plaque components stiffnesses. Ohayon J; Mesnier N; Broisat A; Toczek J; Riou L; Tracqui P Biomech Model Mechanobiol; 2012 Jul; 11(6):801-13. PubMed ID: 21986797 [TBL] [Abstract][Full Text] [Related]
14. Numerical study to indicate the vulnerability of plaques using an idealized 2D plaque model based on plaque classification in the human coronary artery. Lee W; Choi GJ; Cho SW Med Biol Eng Comput; 2017 Aug; 55(8):1379-1387. PubMed ID: 27943103 [TBL] [Abstract][Full Text] [Related]
15. The mechanics of atherosclerotic plaque rupture by inclusion/matrix interfacial decohesion. Nguyen CM; Levy AJ J Biomech; 2010 Oct; 43(14):2702-8. PubMed ID: 20723900 [TBL] [Abstract][Full Text] [Related]
16. The influence of inaccuracies in carotid MRI segmentation on atherosclerotic plaque stress computations. Nieuwstadt HA; Speelman L; Breeuwer M; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ J Biomech Eng; 2014 Feb; 136(2):021015. PubMed ID: 24317274 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the vulnerability risk for positive versus negative atheroma plaque morphology. Cilla M; Peña E; Martínez MA; Kelly DJ J Biomech; 2013 Apr; 46(7):1248-54. PubMed ID: 23523380 [TBL] [Abstract][Full Text] [Related]
18. Effects of intima stiffness and plaque morphology on peak cap stress. Akyildiz AC; Speelman L; van Brummelen H; Gutiérrez MA; Virmani R; van der Lugt A; van der Steen AF; Wentzel JJ; Gijsen FJ Biomed Eng Online; 2011 Apr; 10():25. PubMed ID: 21477277 [TBL] [Abstract][Full Text] [Related]
19. Shear stress and advanced atherosclerosis in human coronary arteries. Gijsen F; van der Giessen A; van der Steen A; Wentzel J J Biomech; 2013 Jan; 46(2):240-7. PubMed ID: 23261245 [TBL] [Abstract][Full Text] [Related]
20. Local axial compressive mechanical properties of human carotid atherosclerotic plaques-characterisation by indentation test and inverse finite element analysis. Chai CK; Akyildiz AC; Speelman L; Gijsen FJ; Oomens CW; van Sambeek MR; van der Lugt A; Baaijens FP J Biomech; 2013 Jun; 46(10):1759-66. PubMed ID: 23664315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]