These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23261351)

  • 1. Supported cobalt catalysts by one-pot aqueous combustion synthesis for catalytic phenol degradation.
    Sun H; Liang H; Zhou G; Wang S
    J Colloid Interface Sci; 2013 Mar; 394():394-400. PubMed ID: 23261351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution combustion synthesis of Co oxide-based catalysts for phenol degradation in aqueous solution.
    Liang H; Ting YY; Sun H; Ang HM; Tadé MO; Wang S
    J Colloid Interface Sci; 2012 Apr; 372(1):58-62. PubMed ID: 22336327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of cobalt species on the interface, which is developed between aqueous solution and metal oxides used for the preparation of supported catalysts: a critical review.
    Bourikas K; Kordulis C; Vakros J; Lycourghiotis A
    Adv Colloid Interface Sci; 2004 Aug; 110(3):97-120. PubMed ID: 15328060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-cost catalysts for the control of indoor CO and PM emissions from solid fuel combustion.
    Doggali P; Kusaba H; Einaga H; Bensaid S; Rayalu S; Teraoka Y; Labhsetwar N
    J Hazard Mater; 2011 Feb; 186(1):796-804. PubMed ID: 21163572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous activation of peroxymonosulphate by supported ruthenium catalysts for phenol degradation in water.
    Muhammad S; Shukla PR; Tadé MO; Wang S
    J Hazard Mater; 2012 May; 215-216():183-90. PubMed ID: 22417400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wet oxidation of phenol over transition metal oxide catalysts supported on Ce0.65 Zr0.35 O2 prepared by continuous hydrothermal synthesis in supercritical water.
    Kim KH; Kim JR; Ihm SK
    J Hazard Mater; 2009 Aug; 167(1-3):1158-62. PubMed ID: 19264401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pot hydrothermal synthesis of Co(OH)2 nanoflakes on graphene sheets and their fast catalytic oxidation of phenol in liquid phase.
    Yao Y; Xu C; Miao S; Sun H; Wang S
    J Colloid Interface Sci; 2013 Jul; 402():230-6. PubMed ID: 23643184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of supporting surface layers on catalytic activities of gold nanoparticles in CO oxidation.
    Yan W; Mahurin SM; Chen B; Overbury SH; Dai S
    J Phys Chem B; 2005 Aug; 109(32):15489-96. PubMed ID: 16852965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supported Cu(II) polymer catalysts for aqueous phenol oxidation.
    Castro IU; Stüber F; Fabregat A; Font J; Fortuny A; Bengoa C
    J Hazard Mater; 2009 Apr; 163(2-3):809-15. PubMed ID: 18722052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supported Ru catalysts prepared by two sonication-assisted methods for preferential oxidation of CO in H2.
    Perkas N; Teo J; Shen S; Wang Z; Highfield J; Zhong Z; Gedanken A
    Phys Chem Chem Phys; 2011 Sep; 13(34):15690-8. PubMed ID: 21799973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of magnetic core/shell carbon nanosphere supported manganese catalysts for oxidation of organics in water by peroxymonosulfate.
    Wang Y; Sun H; Ang HM; Tadé MO; Wang S
    J Colloid Interface Sci; 2014 Nov; 433():68-75. PubMed ID: 25112914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance.
    Morales F; Grandjean D; Mens A; de Groot FM; Weckhuysen BM
    J Phys Chem B; 2006 May; 110(17):8626-39. PubMed ID: 16640417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photo-degradation of acid green dye over Co-ZSM-5 catalysts prepared by incipient wetness impregnation technique.
    El-Bahy ZM; Mohamed MM; Zidan FI; Thabet MS
    J Hazard Mater; 2008 May; 153(1-2):364-71. PubMed ID: 17904732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous activation of Oxone by Co(x)Fe(3-x)O4 nanocatalysts for degradation of rhodamine B.
    Su S; Guo W; Leng Y; Yi C; Ma Z
    J Hazard Mater; 2013 Jan; 244-245():736-42. PubMed ID: 23195597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electro-catalytic degradation of phenol on several metal-oxide anodes.
    Wang YQ; Gu B; Xu WL
    J Hazard Mater; 2009 Mar; 162(2-3):1159-64. PubMed ID: 18684560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on N2O catalytic decomposition over Co/MgO catalysts.
    Shen Q; Li L; Li J; Tian H; Hao Z
    J Hazard Mater; 2009 Apr; 163(2-3):1332-7. PubMed ID: 18771849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cobalt-embedded carbon nanofiber derived from a coordination polymer as a highly efficient heterogeneous catalyst for activating oxone in water.
    Lin KA; Tong WC; Du Y
    Chemosphere; 2018 Mar; 195():272-281. PubMed ID: 29272796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3.
    Liu C; Chen L; Li J; Ma L; Arandiyan H; Du Y; Xu J; Hao J
    Environ Sci Technol; 2012 Jun; 46(11):6182-9. PubMed ID: 22548347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of the preparation method and the Co loading on the structure and activity of cobalt oxide/gamma-alumina catalysts for NO reduction by propene.
    Sarellas A; Niakolas D; Bourikas K; Vakros J; Kordulis C
    J Colloid Interface Sci; 2006 Mar; 295(1):165-72. PubMed ID: 16139839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.