These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 23261354)
1. Emerging pathogenic mechanisms in human myxomatous mitral valve: lessons from past and novel data. Hulin A; Deroanne C; Lambert C; Defraigne JO; Nusgens B; Radermecker M; Colige A Cardiovasc Pathol; 2013; 22(4):245-50. PubMed ID: 23261354 [TBL] [Abstract][Full Text] [Related]
2. Comparative pathology of human and canine myxomatous mitral valve degeneration: 5HT and TGF-β mechanisms. Oyama MA; Elliott C; Loughran KA; Kossar AP; Castillero E; Levy RJ; Ferrari G Cardiovasc Pathol; 2020; 46():107196. PubMed ID: 32006823 [TBL] [Abstract][Full Text] [Related]
3. Human myxomatous mitral valve prolapse: role of bone morphogenetic protein 4 in valvular interstitial cell activation. Sainger R; Grau JB; Branchetti E; Poggio P; Seefried WF; Field BC; Acker MA; Gorman RC; Gorman JH; Hargrove CW; Bavaria JE; Ferrari G J Cell Physiol; 2012 Jun; 227(6):2595-604. PubMed ID: 22105615 [TBL] [Abstract][Full Text] [Related]
4. Modulation of transforming growth factor-β signaling and extracellular matrix production in myxomatous mitral valves by angiotensin II receptor blockers. Geirsson A; Singh M; Ali R; Abbas H; Li W; Sanchez JA; Hashim S; Tellides G Circulation; 2012 Sep; 126(11 Suppl 1):S189-97. PubMed ID: 22965982 [TBL] [Abstract][Full Text] [Related]
5. Apoptosis and abundance of Bcl-2 family and transforming growth factor β1 signaling proteins in canine myxomatous mitral valves. Surachetpong S; Jiranantasak T; Rungsipipat A; Orton EC J Vet Cardiol; 2013 Sep; 15(3):171-80. PubMed ID: 23816827 [TBL] [Abstract][Full Text] [Related]
6. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. Ng CM; Cheng A; Myers LA; Martinez-Murillo F; Jie C; Bedja D; Gabrielson KL; Hausladen JM; Mecham RP; Judge DP; Dietz HC J Clin Invest; 2004 Dec; 114(11):1586-92. PubMed ID: 15546004 [TBL] [Abstract][Full Text] [Related]
7. Metallothionein-dependent up-regulation of TGF-β2 participates in the remodelling of the myxomatous mitral valve. Hulin A; Deroanne CF; Lambert CA; Dumont B; Castronovo V; Defraigne JO; Nusgens BV; Radermecker MA; Colige AC Cardiovasc Res; 2012 Mar; 93(3):480-9. PubMed ID: 22180604 [TBL] [Abstract][Full Text] [Related]
12. Activation of the Interleukin-33/ST2 Pathway Exerts Deleterious Effects in Myxomatous Mitral Valve Disease. Garcia-Pena A; Ibarrola J; Navarro A; Sadaba A; Tiraplegui C; Garaikoetxea M; Arrieta V; Matilla L; Fernández-Celis A; Sadaba R; Alvarez V; Gainza A; Jover E; López-Andrés N Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33669101 [TBL] [Abstract][Full Text] [Related]
13. Stress-induced remodelling of the mitral valve: a model for leaflet thickening and superimposed tissue formation in mitral valve disease. Kruithof BPT; Paardekooper L; Hiemstra YL; Goumans MJ; Palmen M; Delgado V; Klautz RJM; Ajmone Marsan N Cardiovasc Res; 2020 Apr; 116(5):931-943. PubMed ID: 31497851 [TBL] [Abstract][Full Text] [Related]
14. Tryptophan hydroxylase 1 expression is increased in phenotype-altered canine and human degenerative myxomatous mitral valves. Disatian S; Lacerda C; Orton EC J Heart Valve Dis; 2010 Jan; 19(1):71-8. PubMed ID: 20329492 [TBL] [Abstract][Full Text] [Related]
15. TGF-β signalling and reactive oxygen species drive fibrosis and matrix remodelling in myxomatous mitral valves. Hagler MA; Hadley TM; Zhang H; Mehra K; Roos CM; Schaff HV; Suri RM; Miller JD Cardiovasc Res; 2013 Jul; 99(1):175-84. PubMed ID: 23554457 [TBL] [Abstract][Full Text] [Related]
16. Deletion of Fstl1 (Follistatin-Like 1) From the Endocardial/Endothelial Lineage Causes Mitral Valve Disease. Prakash S; Borreguero LJJ; Sylva M; Flores Ruiz L; Rezai F; Gunst QD; de la Pompa JL; Ruijter JM; van den Hoff MJB Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):e116-e130. PubMed ID: 28705792 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of canine 2D cell cultures as models of myxomatous mitral valve degeneration. Tan K; Markby G; Muirhead R; Blake R; Bergeron L; Fici G; Summers K; Macrae V; Corcoran B PLoS One; 2019; 14(8):e0221126. PubMed ID: 31415646 [TBL] [Abstract][Full Text] [Related]
18. Loss of Axin2 results in impaired heart valve maturation and subsequent myxomatous valve disease. Hulin A; Moore V; James JM; Yutzey KE Cardiovasc Res; 2017 Jan; 113(1):40-51. PubMed ID: 28069701 [TBL] [Abstract][Full Text] [Related]
19. Morphological changes to endothelial and interstitial cells and to the extra-cellular matrix in canine myxomatous mitral valve disease (endocardiosis). Han RI; Clark CH; Black A; French A; Culshaw GJ; Kempson SA; Corcoran BM Vet J; 2013 Aug; 197(2):388-94. PubMed ID: 23465752 [TBL] [Abstract][Full Text] [Related]
20. Structural and cellular changes in canine myxomatous mitral valve disease: an image analysis study. Han RI; Black A; Culshaw G; French AT; Corcoran BM J Heart Valve Dis; 2010 Jan; 19(1):60-70. PubMed ID: 20329491 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]