These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 23261396)

  • 21. Homology modeling of an RNP domain from a human RNA-binding protein: Homology-constrained energy optimization provides a criterion for distinguishing potential sequence alignments.
    Sahasrabudhe PV; Tejero R; Kitao S; Furuichi Y; Montelione GT
    Proteins; 1998 Dec; 33(4):558-66. PubMed ID: 9849939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PASS2: an automated database of protein alignments organised as structural superfamilies.
    Bhaduri A; Pugalenthi G; Sowdhamini R
    BMC Bioinformatics; 2004 Apr; 5():35. PubMed ID: 15059245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D-SHOTGUN: a novel, cooperative, fold-recognition meta-predictor.
    Fischer D
    Proteins; 2003 May; 51(3):434-41. PubMed ID: 12696054
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effective connectivity profile: a structural representation that evidences the relationship between protein structures and sequences.
    Bastolla U; Ortíz AR; Porto M; Teichert F
    Proteins; 2008 Dec; 73(4):872-88. PubMed ID: 18536008
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Method for low resolution prediction of small protein tertiary structure.
    Ortiz AR; Hu WP; Kolinski A; Skolnick J
    Pac Symp Biocomput; 1997; ():316-27. PubMed ID: 9390302
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Benchmarking of TASSER in the ab initio limit.
    Borreguero JM; Skolnick J
    Proteins; 2007 Jul; 68(1):48-56. PubMed ID: 17444524
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fold assembly of small proteins using monte carlo simulations driven by restraints derived from multiple sequence alignments.
    Ortiz AR; Kolinski A; Skolnick J
    J Mol Biol; 1998 Mar; 277(2):419-48. PubMed ID: 9514747
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein structure prediction based on sequence similarity.
    Jaroszewski L
    Methods Mol Biol; 2009; 569():129-56. PubMed ID: 19623489
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of TASSER-based CASP7 protein structure prediction results.
    Zhou H; Pandit SB; Lee SY; Borreguero J; Chen H; Wroblewska L; Skolnick J
    Proteins; 2007; 69 Suppl 8():90-7. PubMed ID: 17705276
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of the probabilities for evolutionary structural changes in protein folds.
    Viksna J; Gilbert D
    Bioinformatics; 2007 Apr; 23(7):832-41. PubMed ID: 17282999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Homology-based modeling of 3D structures of protein-protein complexes using alignments of modified sequence profiles.
    Kundrotas PJ; Lensink MF; Alexov E
    Int J Biol Macromol; 2008 Aug; 43(2):198-208. PubMed ID: 18572239
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A database method for automated map interpretation in protein crystallography.
    Diller DJ; Redinbo MR; Pohl E; Hol WG
    Proteins; 1999 Sep; 36(4):526-41. PubMed ID: 10450094
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SPICKER: a clustering approach to identify near-native protein folds.
    Zhang Y; Skolnick J
    J Comput Chem; 2004 Apr; 25(6):865-71. PubMed ID: 15011258
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment.
    Ginalski K; Rychlewski L
    Proteins; 2003; 53 Suppl 6():410-7. PubMed ID: 14579329
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methods for accurate homology modeling by global optimization.
    Joo K; Lee J; Lee J
    Methods Mol Biol; 2012; 857():175-88. PubMed ID: 22323221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New efficient statistical sequence-dependent structure prediction of short to medium-sized protein loops based on an exhaustive loop classification.
    Wojcik J; Mornon JP; Chomilier J
    J Mol Biol; 1999 Jun; 289(5):1469-90. PubMed ID: 10373380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimizing physical energy functions for protein folding.
    Fujitsuka Y; Takada S; Luthey-Schulten ZA; Wolynes PG
    Proteins; 2004 Jan; 54(1):88-103. PubMed ID: 14705026
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assembling novel protein folds from super-secondary structural fragments.
    Jones DT; McGuffin LJ
    Proteins; 2003; 53 Suppl 6():480-5. PubMed ID: 14579336
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structures composing protein domains.
    Kubrycht J; Sigler K; Souček P; Hudeček J
    Biochimie; 2013 Aug; 95(8):1511-24. PubMed ID: 23583577
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quality assessment of modeled protein structure using physicochemical properties.
    Rana PS; Sharma H; Bhattacharya M; Shukla A
    J Bioinform Comput Biol; 2015 Apr; 13(2):1550005. PubMed ID: 25524475
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.