BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 23261415)

  • 1. Co-chaperon DnaJC7/TPR2 enhances p53 stability and activity through blocking the complex formation between p53 and MDM2.
    Kubo N; Wu D; Yoshihara Y; Sang M; Nakagawara A; Ozaki T
    Biochem Biophys Res Commun; 2013 Jan; 430(3):1034-9. PubMed ID: 23261415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DNAJB1 stabilizes MDM2 and contributes to cancer cell proliferation in a p53-dependent manner.
    Qi M; Zhang J; Zeng W; Chen X
    Biochim Biophys Acta; 2014 Jan; 1839(1):62-9. PubMed ID: 24361594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA damage-induced phosphorylation of MdmX at serine 367 activates p53 by targeting MdmX for Mdm2-dependent degradation.
    Okamoto K; Kashima K; Pereg Y; Ishida M; Yamazaki S; Nota A; Teunisse A; Migliorini D; Kitabayashi I; Marine JC; Prives C; Shiloh Y; Jochemsen AG; Taya Y
    Mol Cell Biol; 2005 Nov; 25(21):9608-20. PubMed ID: 16227609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: binding to MDM2, stabilization of p53 protein, and activation of p53 function.
    Chen D; Zhang Z; Li M; Wang W; Li Y; Rayburn ER; Hill DL; Wang H; Zhang R
    Oncogene; 2007 Aug; 26(35):5029-37. PubMed ID: 17310983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TAp73 alpha increases p53 tumor suppressor activity in thyroid cancer cells via the inhibition of Mdm2-mediated degradation.
    Malaguarnera R; Vella V; Pandini G; Sanfilippo M; Pezzino V; Vigneri R; Frasca F
    Mol Cancer Res; 2008 Jan; 6(1):64-77. PubMed ID: 18234963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear Localization Signal and p53 Binding Site in MAP/ERK Kinase Kinase 1 (MEKK1).
    Chipps E; Protzman A; Muhi MZ; Ando S; Calvet JP; Islam MR
    J Cell Biochem; 2015 Dec; 116(12):2903-14. PubMed ID: 26018553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CREB represses p53-dependent transactivation of MDM2 through the complex formation with p53 and contributes to p53-mediated apoptosis in response to glucose deprivation.
    Okoshi R; Kubo N; Nakashima K; Shimozato O; Nakagawara A; Ozaki T
    Biochem Biophys Res Commun; 2011 Mar; 406(1):79-84. PubMed ID: 21295542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein phosphatase 1 nuclear targeting subunit is a hypoxia inducible gene: its role in post-translational modification of p53 and MDM2.
    Lee SJ; Lim CJ; Min JK; Lee JK; Kim YM; Lee JY; Won MH; Kwon YG
    Cell Death Differ; 2007 Jun; 14(6):1106-16. PubMed ID: 17318220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SMAR1 forms a ternary complex with p53-MDM2 and negatively regulates p53-mediated transcription.
    Pavithra L; Mukherjee S; Sreenath K; Kar S; Sakaguchi K; Roy S; Chattopadhyay S
    J Mol Biol; 2009 May; 388(4):691-702. PubMed ID: 19303885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress.
    Grönroos E; Terentiev AA; Punga T; Ericsson J
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12165-70. PubMed ID: 15295102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nucleolar SUMO-specific protease SMT3IP1/SENP3 attenuates Mdm2-mediated p53 ubiquitination and degradation.
    Nishida T; Yamada Y
    Biochem Biophys Res Commun; 2011 Mar; 406(2):285-91. PubMed ID: 21316347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cell-based high-throughput assay for the screening of small-molecule inhibitors of p53-MDM2 interaction.
    Li J; Zhang S; Gao L; Chen Y; Xie X
    J Biomol Screen; 2011 Apr; 16(4):450-6. PubMed ID: 21471462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. E2F-1 transcriptional activity is a critical determinant of Mdm2 antagonist-induced apoptosis in human tumor cell lines.
    Kitagawa M; Aonuma M; Lee SH; Fukutake S; McCormick F
    Oncogene; 2008 Sep; 27(40):5303-14. PubMed ID: 18521084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UBTD1 induces cellular senescence through an UBTD1-Mdm2/p53 positive feedback loop.
    Zhang XW; Wang XF; Ni SJ; Qin W; Zhao LQ; Hua RX; Lu YW; Li J; Dimri GP; Guo WJ
    J Pathol; 2015 Mar; 235(4):656-67. PubMed ID: 25382750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. E2F1 inhibits MDM2 expression in a p53-dependent manner.
    Tian X; Chen Y; Hu W; Wu M
    Cell Signal; 2011 Jan; 23(1):193-200. PubMed ID: 20837136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Onzin, a c-Myc-repressed target, promotes survival and transformation by modulating the Akt-Mdm2-p53 pathway.
    Rogulski K; Li Y; Rothermund K; Pu L; Watkins S; Yi F; Prochownik EV
    Oncogene; 2005 Nov; 24(51):7524-41. PubMed ID: 16170375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1.
    Ambrosini G; Sambol EB; Carvajal D; Vassilev LT; Singer S; Schwartz GK
    Oncogene; 2007 May; 26(24):3473-81. PubMed ID: 17146434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRIAD1 inhibits MDM2-mediated p53 ubiquitination and degradation.
    Bae S; Jung JH; Kim K; An IS; Kim SY; Lee JH; Park IC; Jin YW; Lee SJ; An S
    FEBS Lett; 2012 Sep; 586(19):3057-63. PubMed ID: 22819825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p53 mediates the negative regulation of MDM2 by orphan receptor TR3.
    Zhao BX; Chen HZ; Lei NZ; Li GD; Zhao WX; Zhan YY; Liu B; Lin SC; Wu Q
    EMBO J; 2006 Dec; 25(24):5703-15. PubMed ID: 17139261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage.
    Gajjar M; Candeias MM; Malbert-Colas L; Mazars A; Fujita J; Olivares-Illana V; Fåhraeus R
    Cancer Cell; 2012 Jan; 21(1):25-35. PubMed ID: 22264786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.