These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 23261555)

  • 1. The mechanism of the polymer-induced drag reduction in blood.
    Pribush A; Hatzkelzon L; Meyerstein D; Meyerstein N
    Colloids Surf B Biointerfaces; 2013 Mar; 103():354-9. PubMed ID: 23261555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical degradation of drag reducing polymers in suspensions of blood cells and rigid particles.
    Marhefka JN; Velankar SS; Chapman TM; Kameneva MV
    Biorheology; 2008; 45(5):599-609. PubMed ID: 19065008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of the prior flow velocity on the structural organization of aggregated erythrocytes in the quiescent blood.
    Pribush A; Meyerstein D; Meyerstein N
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):518-25. PubMed ID: 21036560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemorheological and hemodynamic effects of high molecular weight polyethylene oxide solutions.
    Antonova N; Lazarov Z
    Clin Hemorheol Microcirc; 2004; 30(3-4):381-90. PubMed ID: 15258370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dielectric approach to investigation of erythrocyte aggregation. II. Kinetics of erythrocyte aggregation-disaggregation in quiescent and flowing blood.
    Pribush A; Meiselman HJ; Meyerstein D; Meyerstein N
    Biorheology; 2000; 37(5-6):429-41. PubMed ID: 11204548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental evaluation of mechanical and electrical properties of RBC suspensions under flow. Role of RBC aggregating agent.
    Antonova N; Riha P; Ivanov I
    Clin Hemorheol Microcirc; 2010; 45(2-4):253-61. PubMed ID: 20675907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro effects of polyethylene glycol in University of Wisconsin preservation solution on human red blood cell aggregation and hemorheology.
    Zhao WY; Xiong HY; Yuan Q; Zeng L; Wang LM; Zhu YH
    Clin Hemorheol Microcirc; 2011; 47(3):177-85. PubMed ID: 21498897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells.
    Chapanian R; Constantinescu I; Rossi NA; Medvedev N; Brooks DE; Scott MD; Kizhakkedathu JN
    Biomaterials; 2012 Nov; 33(31):7871-83. PubMed ID: 22840223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood rheology and hemodynamics.
    Baskurt OK; Meiselman HJ
    Semin Thromb Hemost; 2003 Oct; 29(5):435-50. PubMed ID: 14631543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface characterization of poly(ethylene glycol) coated human red blood cells by particle electrophoresis.
    Neu B; Armstrong JK; Fisher TC; Meiselman HJ
    Biorheology; 2003; 40(4):477-87. PubMed ID: 12775912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemodynamic effects of a poly(ethylene oxide) drag-reducing polymer, Polyox WSR N-60K, in the open-chest rat.
    Polimeni PI; Ottenbreit BT
    J Cardiovasc Pharmacol; 1989 Sep; 14(3):374-80. PubMed ID: 2476615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymer-surfactant complex formation and its effect on turbulent wall shear stress.
    Suksamranchit S; Sirivat A; Jamieson AM
    J Colloid Interface Sci; 2006 Feb; 294(1):212-21. PubMed ID: 16112676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the microcirculation in the acute ischemic rat limb during intravenous infusion of drag-reducing polymers.
    Hu F; Zha D; Du R; Chen X; Zhou B; Xiu J; Bin J; Liu Y
    Biorheology; 2011; 48(3-4):149-59. PubMed ID: 22156030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation.
    Mchedlishvili G
    Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conductometric study of shear-dependent processes in red cell suspensions. II. Transient cross-stream hematocrit distribution.
    Pribush A; Meyerstein D; Meiselman HJ; Meyerstein N
    Biorheology; 2004; 41(1):29-43. PubMed ID: 14967888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductometric study of shear-dependent processes in red cell suspensions. I. Effect of red blood cell aggregate morphology on blood conductance.
    Pribush A; Meyerstein D; Meyerstein N
    Biorheology; 2004; 41(1):13-28. PubMed ID: 14967887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Hemodynamic and rheological effects of polyetox in rats with crush syndrome].
    Plotnikov MB; Chernyshova GA; Smol'iakova VI; Aliev OI; Sutormina TG
    Eksp Klin Farmakol; 2004; 67(3):21-5. PubMed ID: 15341062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of polymer-surfactant aggregates on fluid flow.
    Malcher T; Gzyl-Malcher B
    Bioelectrochemistry; 2012 Oct; 87():42-9. PubMed ID: 22357360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of pegylated hamster red blood cells on microcirculation.
    Chen PC; Huang W; Stassinopoulos A; Cheung AT
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(4):295-309. PubMed ID: 18649167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic mobility of human red blood cells coated with poly(ethylene glycol).
    Neu B; Armstrong JK; Fisher TC; Bäumler H; Meiselman HJ
    Biorheology; 2001; 38(5-6):389-403. PubMed ID: 12016322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.