These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 23261573)
1. Rhamnolipid (RL) from Pseudomonas aeruginosa OBP1: a novel chemotaxis and antibacterial agent. Bharali P; Saikia JP; Ray A; Konwar BK Colloids Surf B Biointerfaces; 2013 Mar; 103():502-9. PubMed ID: 23261573 [TBL] [Abstract][Full Text] [Related]
2. Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage. Sana S; Datta S; Biswas D; Sengupta D Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):579-585. PubMed ID: 28988129 [TBL] [Abstract][Full Text] [Related]
3. Colloidal silver nanoparticles/rhamnolipid (SNPRL) composite as novel chemotactic antibacterial agent. Bharali P; Saikia JP; Paul S; Konwar BK Int J Biol Macromol; 2013 Oct; 61():238-42. PubMed ID: 23850558 [TBL] [Abstract][Full Text] [Related]
4. Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge. Bharali P; Konwar BK Appl Biochem Biotechnol; 2011 Aug; 164(8):1444-60. PubMed ID: 21468636 [TBL] [Abstract][Full Text] [Related]
5. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa. Sotirova A; Spasova D; Vasileva-Tonkova E; Galabova D Microbiol Res; 2009; 164(3):297-303. PubMed ID: 17416508 [TBL] [Abstract][Full Text] [Related]
7. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. Devi KP; Nisha SA; Sakthivel R; Pandian SK J Ethnopharmacol; 2010 Jul; 130(1):107-15. PubMed ID: 20435121 [TBL] [Abstract][Full Text] [Related]
8. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Haba E; Pinazo A; Jauregui O; Espuny MJ; Infante MR; Manresa A Biotechnol Bioeng; 2003 Feb; 81(3):316-22. PubMed ID: 12474254 [TBL] [Abstract][Full Text] [Related]
9. Synthesis, characterization, and evaluation of antibacterial efficacy of rhamnolipid-coated zinc oxide nanoparticles against Staphylococcus aureus. Malakar C; Patowary K; Deka S; Kalita MC World J Microbiol Biotechnol; 2021 Oct; 37(11):193. PubMed ID: 34642826 [TBL] [Abstract][Full Text] [Related]
10. The antibacterial activity of rhamnolipid biosurfactant is pH dependent. de Freitas Ferreira J; Vieira EA; Nitschke M Food Res Int; 2019 Feb; 116():737-744. PubMed ID: 30717003 [TBL] [Abstract][Full Text] [Related]
11. Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil. Bouhdid S; Abrini J; Zhiri A; Espuny MJ; Manresa A J Appl Microbiol; 2009 May; 106(5):1558-68. PubMed ID: 19226402 [TBL] [Abstract][Full Text] [Related]
12. Antibiofilm and wound healing efficacy of rhamnolipid biosurfactant against pathogenic bacterium Staphylococcus aureus. Malakar C; Kashyap B; Bhattacharjee S; Chandra Kalita M; Mukherjee AK; Deka S Microb Pathog; 2024 Oct; 195():106855. PubMed ID: 39151739 [TBL] [Abstract][Full Text] [Related]
13. In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Robinson DA; Griffith RW; Shechtman D; Evans RB; Conzemius MG Acta Biomater; 2010 May; 6(5):1869-77. PubMed ID: 19818422 [TBL] [Abstract][Full Text] [Related]
14. Activity of antibacterial protein from maggots against Staphylococcus aureus in vitro and in vivo. Zhang Z; Wang J; Zhang B; Liu H; Song W; He J; Lv D; Wang S; Xu X Int J Mol Med; 2013 May; 31(5):1159-65. PubMed ID: 23467515 [TBL] [Abstract][Full Text] [Related]
15. Effect of subinihibitory and inhibitory concentrations of Plectranthus amboinicus (Lour.) Spreng essential oil on Klebsiella pneumoniae. Gonçalves TB; Braga MA; de Oliveira FF; Santiago GM; Carvalho CB; Brito e Cabral P; de Melo Santiago T; Sousa JS; Barros EB; do Nascimento RF; Nagao-Dias AT Phytomedicine; 2012 Aug; 19(11):962-8. PubMed ID: 22776104 [TBL] [Abstract][Full Text] [Related]
16. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Borges A; Ferreira C; Saavedra MJ; Simões M Microb Drug Resist; 2013 Aug; 19(4):256-65. PubMed ID: 23480526 [TBL] [Abstract][Full Text] [Related]
17. Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus. Samadi N; Abadian N; Ahmadkhaniha R; Amini F; Dalili D; Rastkari N; Safaripour E; Mohseni FA Folia Microbiol (Praha); 2012 Nov; 57(6):501-8. PubMed ID: 22644668 [TBL] [Abstract][Full Text] [Related]
18. Antibacterial action of a heat-stable form of L-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom. Lee ML; Tan NH; Fung SY; Sekaran SD Comp Biochem Physiol C Toxicol Pharmacol; 2011 Mar; 153(2):237-42. PubMed ID: 21059402 [TBL] [Abstract][Full Text] [Related]
19. Antibacterial activity of Syzygium aromaticum seed: Studies on oxidative stress biomarkers and membrane permeability. Ajiboye TO; Mohammed AO; Bello SA; Yusuf II; Ibitoye OB; Muritala HF; Onajobi IB Microb Pathog; 2016 Jun; 95():208-215. PubMed ID: 27038843 [TBL] [Abstract][Full Text] [Related]