BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 23261573)

  • 1. Rhamnolipid (RL) from Pseudomonas aeruginosa OBP1: a novel chemotaxis and antibacterial agent.
    Bharali P; Saikia JP; Ray A; Konwar BK
    Colloids Surf B Biointerfaces; 2013 Mar; 103():502-9. PubMed ID: 23261573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of synergistic antibacterial activity of combined biosurfactants revealed by bacterial cell envelop damage.
    Sana S; Datta S; Biswas D; Sengupta D
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):579-585. PubMed ID: 28988129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal silver nanoparticles/rhamnolipid (SNPRL) composite as novel chemotactic antibacterial agent.
    Bharali P; Saikia JP; Paul S; Konwar BK
    Int J Biol Macromol; 2013 Oct; 61():238-42. PubMed ID: 23850558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge.
    Bharali P; Konwar BK
    Appl Biochem Biotechnol; 2011 Aug; 164(8):1444-60. PubMed ID: 21468636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of rhamnolipid-biosurfactant on cell surface of Pseudomonas aeruginosa.
    Sotirova A; Spasova D; Vasileva-Tonkova E; Galabova D
    Microbiol Res; 2009; 164(3):297-303. PubMed ID: 17416508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane.
    Devi KP; Nisha SA; Sakthivel R; Pandian SK
    J Ethnopharmacol; 2010 Jul; 130(1):107-15. PubMed ID: 20435121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044.
    Haba E; Pinazo A; Jauregui O; Espuny MJ; Infante MR; Manresa A
    Biotechnol Bioeng; 2003 Feb; 81(3):316-22. PubMed ID: 12474254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, characterization, and evaluation of antibacterial efficacy of rhamnolipid-coated zinc oxide nanoparticles against Staphylococcus aureus.
    Malakar C; Patowary K; Deka S; Kalita MC
    World J Microbiol Biotechnol; 2021 Oct; 37(11):193. PubMed ID: 34642826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The antibacterial activity of rhamnolipid biosurfactant is pH dependent.
    de Freitas Ferreira J; Vieira EA; Nitschke M
    Food Res Int; 2019 Feb; 116():737-744. PubMed ID: 30717003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of functional and morphological changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Origanum compactum essential oil.
    Bouhdid S; Abrini J; Zhiri A; Espuny MJ; Manresa A
    J Appl Microbiol; 2009 May; 106(5):1558-68. PubMed ID: 19226402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro antibacterial properties of magnesium metal against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.
    Robinson DA; Griffith RW; Shechtman D; Evans RB; Conzemius MG
    Acta Biomater; 2010 May; 6(5):1869-77. PubMed ID: 19818422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activity of antibacterial protein from maggots against Staphylococcus aureus in vitro and in vivo.
    Zhang Z; Wang J; Zhang B; Liu H; Song W; He J; Lv D; Wang S; Xu X
    Int J Mol Med; 2013 May; 31(5):1159-65. PubMed ID: 23467515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of subinihibitory and inhibitory concentrations of Plectranthus amboinicus (Lour.) Spreng essential oil on Klebsiella pneumoniae.
    Gonçalves TB; Braga MA; de Oliveira FF; Santiago GM; Carvalho CB; Brito e Cabral P; de Melo Santiago T; Sousa JS; Barros EB; do Nascimento RF; Nagao-Dias AT
    Phytomedicine; 2012 Aug; 19(11):962-8. PubMed ID: 22776104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria.
    Borges A; Ferreira C; Saavedra MJ; Simões M
    Microb Drug Resist; 2013 Aug; 19(4):256-65. PubMed ID: 23480526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus.
    Samadi N; Abadian N; Ahmadkhaniha R; Amini F; Dalili D; Rastkari N; Safaripour E; Mohseni FA
    Folia Microbiol (Praha); 2012 Nov; 57(6):501-8. PubMed ID: 22644668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial action of a heat-stable form of L-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom.
    Lee ML; Tan NH; Fung SY; Sekaran SD
    Comp Biochem Physiol C Toxicol Pharmacol; 2011 Mar; 153(2):237-42. PubMed ID: 21059402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibacterial activity of Syzygium aromaticum seed: Studies on oxidative stress biomarkers and membrane permeability.
    Ajiboye TO; Mohammed AO; Bello SA; Yusuf II; Ibitoye OB; Muritala HF; Onajobi IB
    Microb Pathog; 2016 Jun; 95():208-215. PubMed ID: 27038843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cleavable cationic antibacterial amphiphiles: synthesis, mechanism of action, and cytotoxicities.
    Hoque J; Akkapeddi P; Yarlagadda V; Uppu DS; Kumar P; Haldar J
    Langmuir; 2012 Aug; 28(33):12225-34. PubMed ID: 22838496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mode of antibacterial activity of Eclalbasaponin isolated from Eclipta alba.
    Ray A; Bharali P; Konwar BK
    Appl Biochem Biotechnol; 2013 Dec; 171(8):2003-19. PubMed ID: 24013881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A substrate-independent approach for bactericidal surfaces.
    Schofield WC; Badyal JP
    ACS Appl Mater Interfaces; 2009 Dec; 1(12):2763-7. PubMed ID: 20356154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.