These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23261601)

  • 81. Plant made anti-HIV microbicides--a field of opportunity.
    Lotter-Stark HC; Rybicki EP; Chikwamba RK
    Biotechnol Adv; 2012; 30(6):1614-26. PubMed ID: 22750509
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Anti-HIV dendrimeric peptides.
    Yu Q; Li L; Tam JP
    Adv Exp Med Biol; 2009; 611():539-40. PubMed ID: 19400303
    [No Abstract]   [Full Text] [Related]  

  • 83. Investigation of the anti-HIV properties of oxihumate.
    van Rensburg CE; Dekker J; Weis R; Smith TL; Janse van Rensburg E; Schneider J
    Chemotherapy; 2002 Jul; 48(3):138-43. PubMed ID: 12138330
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Therapeutic potential of peptide motifs--part II.
    Hervé JC
    Curr Pharm Des; 2009; 15(21):2375-6. PubMed ID: 19601849
    [No Abstract]   [Full Text] [Related]  

  • 85. Lipocortin-derived peptides.
    Perretti M
    Biochem Pharmacol; 1994 Mar; 47(6):931-8. PubMed ID: 8147912
    [No Abstract]   [Full Text] [Related]  

  • 86. Leveraging the therapeutic, biological, and self-assembling potential of peptides for the treatment of viral infections.
    Monroe MK; Wang H; Anderson CF; Jia H; Flexner C; Cui H
    J Control Release; 2022 Aug; 348():1028-1049. PubMed ID: 35752254
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Endogenous Peptide Inhibitors of HIV Entry.
    Harms M; Hayn M; Zech F; Kirchhoff F; Münch J
    Adv Exp Med Biol; 2022; 1366():65-85. PubMed ID: 35412135
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Filling the Gaps in Antagonist CCR5 Binding, a Retrospective and Perspective Analysis.
    Amerzhanova Y; Vangelista L
    Front Immunol; 2022; 13():826418. PubMed ID: 35126399
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Rational CCL5 mutagenesis integration in a lactobacilli platform generates extremely potent HIV-1 blockers.
    Secchi M; Grampa V; Vangelista L
    Sci Rep; 2018 Jan; 8(1):1890. PubMed ID: 29382912
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Current Peptide and Protein Candidates Challenging HIV Therapy beyond the Vaccine Era.
    Chupradit K; Moonmuang S; Nangola S; Kitidee K; Yasamut U; Mougel M; Tayapiwatana C
    Viruses; 2017 Sep; 9(10):. PubMed ID: 28961190
    [TBL] [Abstract][Full Text] [Related]  

  • 91. An enhanced recombinant amino-terminal acetylation system and novel in vivo high-throughput screen for molecules affecting α-synuclein oligomerisation.
    Eastwood TA; Baker K; Brooker HR; Frank S; Mulvihill DP
    FEBS Lett; 2017 Mar; 591(6):833-841. PubMed ID: 28214355
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Combination of the CCL5-derived peptide R4.0 with different HIV-1 blockers reveals wide target compatibility and synergic cobinding to CCR5.
    Secchi M; Vassena L; Morin S; Schols D; Vangelista L
    Antimicrob Agents Chemother; 2014 Oct; 58(10):6215-23. PubMed ID: 25114130
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Characterization of structure, dynamics, and detergent interactions of the anti-HIV chemokine variant 5P12-RANTES.
    Wiktor M; Hartley O; Grzesiek S
    Biophys J; 2013 Dec; 105(11):2586-97. PubMed ID: 24314089
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Peptide and protein-based inhibitors of HIV-1 co-receptors.
    von Recum HA; Pokorski JK
    Exp Biol Med (Maywood); 2013 May; 238(5):442-9. PubMed ID: 23856897
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Structural determinants of CCR5 recognition and HIV-1 blockade in RANTES.
    Nardese V; Longhi R; Polo S; Sironi F; Arcelloni C; Paroni R; DeSantis C; Sarmientos P; Rizzi M; Bolognesi M; Pavone V; Lusso P
    Nat Struct Biol; 2001 Jul; 8(7):611-5. PubMed ID: 11427892
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Critical role of the N-loop and beta1-strand hydrophobic clusters of RANTES-derived peptides in anti-HIV activity.
    Vangelista L; Longhi R; Sironi F; Pavone V; Lusso P
    Biochem Biophys Res Commun; 2006 Dec; 351(3):664-8. PubMed ID: 17083916
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Macrophages and lymphocytes differentially modulate the ability of RANTES to inhibit HIV-1 infection.
    Gross E; Amella CA; Pompucci L; Franchin G; Sherry B; Schmidtmayerova H
    J Leukoc Biol; 2003 Nov; 74(5):781-90. PubMed ID: 12960233
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Genotypic coreceptor analysis.
    Sierra S; Kaiser R; Thielen A; Lengauer T
    Eur J Med Res; 2007 Oct; 12(9):453-62. PubMed ID: 17933727
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Enhancement of anti-HIV-1 activity by hot spot evolution of RANTES-derived peptides.
    Secchi M; Longhi R; Vassena L; Sironi F; Grzesiek S; Lusso P; Vangelista L
    Chem Biol; 2012 Dec; 19(12):1579-88. PubMed ID: 23261601
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.